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Abstract—Mobile Crowdsensing System (MCS) applications
deploy rating feedback mechanisms to help quantify the trust-
worthiness of published events which over time improve decision
accuracy and establish user reputation. In this paper, we first
show that factors such as sparseness, inherent error probabilities
of rating feedback labelers, and prior knowledge of the event trust
scoring models, can be used by strategic adversaries to hijack the
feedback labeling mechanism itself with bad mouthing attacks.
Then, we propose a randomized rating sub-sampling technique
inspired from moving target defense and cyber deception to
mitigate the degradation in the resulting event trust scores of
truthful events. We offer a game theoretic strategy under various
knowledge levels of an adversary and the MCS in regards to
picking an optimal sub-sample size for bad mouthing attacks
and event trust calculations respectively, by using a vehicular
crowdsensing as a proof-of-concept.

Index Terms—Mobile Crowdsensing Security, Moving Target
Defense, Trust, Cyber Deception, Security of AI

I. Introduction

Widespread availability of internet of things (IoT) and hand-
held mobile devices (e.g., smartphones, tablets, smartwatches,
smart vehicles, roadside units) and rapid advances in pervasive
sensing technologies have fueled the development of Mobile
Crowdsensing Systems (MCS). A typical MCS involves a
server that accumulates voluntary contributions given by either
autonomous sensing agents (e.g., IoT devices) or by humans
(via an App).

Based on the nature of the MCS applications, either individ-
ual contributions or a summary statistic of such contributions
(called events) are published by the MCS service provider.
Such published events guide human choices or automated
decisions that improve the quality of life and civic-well being
in smart cities. The real benefit of using an MCS paradigm is
that precise and fine-grained information collection is possible
without maintaining expensive dedicated infrastructure.

Real life examples of MCS include Google Waze [15],
where contributions are in the form of ‘reports’ from humans
indicating the presence of special road events (viz., jam,
accident, weather hazard, crime scene, speed trap, gasoline
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prices). Based on the reports, Waze publishes events on its
App. that allows intelligent traffic route selection. Most mobile
apps and socio-economic networks, such as Yelp, run similarly.

However, a real challenge in MCS is the ‘trust loop prob-
lem’ [7]. Arguably, the collection of evidence to quantify trust
is the most challenging aspect. To be precise, even if we obtain
some evidence indicating reliability/trust, how can one be sure
that this very evidence is itself reliable [7]? MCS also suffers
from a cold start problem: When an MCS is launched it has no
idea of prior trustworthiness of users or prior probabilities of
event types. Therefore, mechanisms depending on prior trust
of users to quantify event trust, do not work. Another class of
methods propose the identification of rogue users by comparing
the deviation of each user’s report with a truth discovery
mechanism. However, truth discovery mechanisms do not take
into account orchestrated attacks, and assign reputation based
on the truth discovery output.

To address the above issues, some existing methods offer a
feedback monitoring mechanism that allows other users/agents
known as labelers/raters, who provide positive, negative, or
uncertain rating labels to the reports/events. This allows an
initial truthfulness perception of the events, based on which
the user reputation is built. With time, the MCS can remove
low reputation users to improve reliability. However, this rating
feedback motivates the possibility of orchestrated false rat-
ings/feedbacks/labels (known as feedback weaponizing attacks)
from a well-organized malicious adversary that biases the event
trust scoring mechanism. This negatively affects reputation
systems, incentive assignment, and publishing decisions. The
three established feedback weaponizing attacks are ballot stuff-
ing, bad mouthing, and obfuscation stuffing [3]. Ballot stuffing
and obfuscation stuffing attack’s goal is to make spam events
look true, while bad mouthing attack try to suppress important
events that really occurred.

Now, most of the existing methods for event trust scoring use
variants of Josang’s Belief Model [10], Beta Distribution [9],
or Dempster Shafer Belief [11]. While some works [3] provide
active resilience to ballot stuffing and obfuscation stuffing
attacks, none of them actively mitigate bad mouthing attacks.



A. Motivation

To motivate this paper, we present three important challenges
not adequately addressed in previous works.

First challenge is the sparsity in the rating feedback of the
MCS. Prior event trust models assume that deployment of an
MCS automatically implies the availability of a substantial
rating population that keeps the relative proportion of compro-
mised feedbacks to the total number of feedbacks low enough;
for event trust scores to remain unbiased [3]. Nonetheless, this
assumption may not always be practical. On one hand, newly
launched MCS may have a lower customer base, and hence
the rating feedback labelers are lower to begin with. A rival
business with a small attack budget may poison the event trust
score and prevent good reporters from gaining reputation, thus
forcing them to get less incentives. On the other hand, even
when the MCS may have a high user base, the geographical
spread of this user base may not be spatio-temporally uniform.
For example, a downtown area has less crowd during nights;
similarly some parts of a city may inherently be sparsely
populated than other areas. In such instances, an adversary can
poison event trust scores with a small attack budget.

The second challenge is error probabilities in the feedback
apparatus. Existing event trust models do not mathematically
incorporate, the error probability of rating feedback from an
honest rater combined along with the possibility of feedback
weaponizing attacks. When the error probability is combined
with the presence of an attack, we observe that existing trust
scoring models lead to biased results on true events even
when a minority of the rating population is compromised, as
elaborated in Section IV-C1.

The third challenge is about targeted feedback weaponizing
attacks by adversaries with prior knowledge of our proposed
defense model. In our paper, our defense needs to take into
account according to Kirchoff’s principle [16] that any defense
model should not assume secrecy of the model.

B. Contributions of this Paper

In this paper, we establish the use of a moving target
cyber deception based sub-sampling technique as a method to
ensure active resilience against bad mouthing attacks when the
rating sample sizes are smaller and the honest rating labelers
have errors in their judgment, in presence of uncertainty and
adversaries having knowledge of event trust scoring models.
Specifically, we first establish some conditions under which
linear models (e.g., Josang model and Beta trust model) as well
as nonlinear models (e.g., QnQ [3]) fail. Then, we describe
the sub-population sampling method under various adversar-
ial scenarios, and available information present to the MCS
provider. We show that when the rating consensus is lacking
and the attack scale is unknown, a sub-sampled strategy for
quantifying event trust (1) decreases the probability of evasion
of bad mouthing attacks; (2) improves the estimation of event
trust accurately, regardless of whether the adversary controls

the majority or minority of the rating feedback population. We
also provide a game theoretic formulation where we analyze
strategic behaviors of MCS and adversaries by taking into
consideration economics of security attack and defense, thereby
showing improved resilience to bad mouthing attacks and boost
in event trust scores, as compared to the existing methods.

The paper is organized as follows. Section II introduces
preliminaries and different rating feedback systems. Section III
describes the system architecture and threat model. Section IV
presents the proposed approach while Section V reports exper-
imental results. The final section concludes the paper.

II. Preliminaries

Typical event trust in MCS include three major phases:
(1) accumulate ratings (feedbacks) on the event that serve as
‘evidence’; (2) quantify an event’s trust score by using the
available ratings; and (3) classification decision on whether
the event is truthful or not by comparing the event trust score
with a hard or soft threshold.

A. Rating Feedback Systems and Event Trust

Rating feedback mechanisms specify a discrete state space
of choices that any rater has about the authenticity of an
event. The raters could be a human, mobile trusted agents, or
watchdog module running an anomaly detector, which provide
a rating conceptually belonging to three categories: positive
feedback (α), negative feedback (β), and uncertain feedback
(µ). Let the number of ratings per category be denoted as ηα, ηβ,
and ηµ and the event’s evidence is denoted as E : 〈N, ηα, ηβ, ηµ〉
where N is total population of ratings, N = ηα + ηβ + ηµ. The
event trust is quantified by the following known techniques.

B. Beta Trust Model

Beta trust treats the state space as binary while Beta repu-
tation [9] can be applied to both binary and ternary evidence
state spaces. The event trust (truthfulness) is as quantified as:

QoIbeta =
ηα + 1
N + 2

, where 0 < QoIbeta < 1 (1)

where ηα is the total number of positive feedbacks and N is
the total number of feedbacks received.

C. Josang’s Belief Model

Josang’s Belief Model [10] explicitly handles uncertainty in
the evidence, by specifying expected truthfulness (E) by the
following linear score:

QoI jo = b + (a).u, where b =
(ηα + 1

N + 3

)
; u =

(ηµ + 1
N + 3

)
(2)

Here b and u are the degrees of belief and uncertainty respec-
tively, and a is the relative atomicity parameter that decides the
extent to which the uncertainty should contribute to the event
truthfulness. Note that a = 0.5 if there is no prior information
available, such that 0 < QoI jo < 1 acts as a linear predictor of
the estimated truthfulness of this event.



D. QnQ Belief Model

In quality vs. quantity (QnQ) model [3], the event trust is:

QoIQnQ = wb.b + wu.u (3)

where b and u are the same as Josang’s Belief model as above,
but wb and wu are Richard’s and Kohlsrausch relaxation [6]
functions. (Refer to [2], [3] for mathematical details.) We found
that while ballot stuffing and obfuscation attacks are actively
prevented by QnQ, bad mouthing attacks are passively avoided
by virtue of the assumption of large crowd. In short, QnQ
works well under sparse samples but only for ballot stuffing and
obfuscation stuffing attacks but for not bad mouthing attacks.

E. Relationship between Voting Systems and Event Trust

Majority voting is central to dependable decision making in
cooperative distributed systems. Here, we show that majority
voting is implicitly related to how event trust scores are
interpreted for event inference.

Binary rating can be viewed as voting for an event. Let the
evidence be a tuple 〈ηα, ηβ〉 indicating the number of positive
and negative ratings received. Suppose the MCS receives
two events with evidences: E1: 〈20, 30〉 and E2: 〈21, 20〉. A
decision rule by majority voting would indicate that the event
is false for E1, while it is true for E2. However, the majority
voting is a hard decision rule and lacks intelligence in the sense
that it cannot quantify confidence on the event’s likelihood of
being actually true or false. For example, if E3: 〈98, 2〉, the
answer will still be a true event and there will be no difference
between E2 and E3 although the likelihood of E3 of being
actually true is higher.

In contrast, models such as beta trust [9], have roots in
AI and enable similar outcomes but via a soft decision rule
that allows embedding the notion of confidence into event
decisions. By taking the same example: E1’s beta trust score
is 0.4038, while E2’s is 0.5116. To classify between a true
versus a false event (a binary classification problem), one needs
a logit link function to evaluate the trust score. A negative
score probabilistically indicates the event is likely false while
a positive score means the event is likely true [3], [4]. This is
because the mid-point of 0.5 is assumed as a neutral decision
boundary between true versus false event inferences. Therefore,
for E1, E2, and E3, we get log(0.40/(1 − 0.40)) = −0.16
and 0.020, and 1.5 respectively. Therefore, E1 and E2 will
be inferred as a false and true event, respectively. We can
observe that the final inference is the same in both voting
and trust models. However, unlike voting, the trust scoring
with AI approach allows to distinguish between two events
that are positive in their score (E2 and E3), but for event with
a greater score the decision maker has more confidence that
it is indeed true. This aspect helps in assigning proportional
incentives based on the trust unlike voting. This makes the
AI based approach to event trust scoring more intelligent than

(a) (b)
Figure 1: Trust Score under Bad Mouthing: (a) Majority honest,
(b) Majority compromised

majority voting, although they are similar in terms of decision
output for the event.

Ternary rating contains an additional category of neu-
tral/uncertain unlike binary ratings. The authors in [4] showed
that we can accommodate uncertainty by partial splitting of
uncertain ratings in the ratio of the observed positive and
negative ratings; and then adding it to the positive feedback.
This way it can approximate the Beta Model by providing
modified effective positive and negative ratings that can be
applied to Beta Trust [4], if probability of all components get-
ting compromised is uniform. For example, for 10 positive, 8
negative and 4 uncertain ratings, the effective positive posterior
belief are obtained by partially splitting 4 uncertain ratings in
the ratio of the observed ηα and ηβ such that the modified
positive votes are:

η
′′

α = dηα +
( ηα
ηα + ηβ

)
.ηµe; η

′′

β = N − η
′′

α ; QoI =
η
′′

α + 1
η
′′

β + η′′α + 2
(4)

Thus, if the majority of the rating population is honestly
giving correct feedback, the Beta and Josang belief models
deliver an event trust score more than 0.5, as depicted in
Fig. 1a where 60% raters are honest. This relationship is used
to simplify some analysis in our paper.

III. System and ThreatModels

In this section, we present the abstraction of the MCS, the
threat of bad mouthing attacks, and novel considerations that
have not been incorporated in previous works.

A. System Model

We assume a network of U users/devices subscribed to a
crowdsensing application. Users have three types of roles for
a given event E: (a) reporter (b) rater (c) passive consumers
who do not participate in either reporting/rating.
Reporters: are the set of users who report to the MCS server
indicating an ‘event’ of interest. The MCS server publicly
publishes, either the individual reports or an aggregate decision
from all reports, as an ‘event’ of interest, to all other users of
that application during the cold start phase.
Raters: are the set of users (humans) or machines (drones)
who provide a rating on the published events which indicate
the crowd-sensed perception of the relative goodness of the



published events. We denote the total number of ratings re-
ceived for a given event as N, and the number of positive,
negative, and uncertain ratings are ηα, ηβ, ηµ respectively.
Events: Each event E has a geo-boundary and a time period
of viability. Users within the boundary and time period are
liable to rate it. Reporters cannot rate the event reported by
themselves, while a rater can rate a single event only once.
Rating Probabilities of Honest Raters: Let pb be the probabil-
ity that an honest rater accurately rates a legitimate event as
true. Any rater when not controlled by an adversary has an error
probability of pe with which it mistakenly rates a legitimate
event as false. For example, extreme weather conditions with
low visibility can produce errors in judgment by drones. The
probability that an honest rater rates a true event as uncertain
is pu. So from the above, for an honest rater pb + pu + pe = 1.
Therefore, the probability that an honest rater does not rate a
true event with positive feedback is 1− pb. This is a robustness
issue rather than a security issue, but it still affects the event
trust score outcome negatively.

B. Threat Model

Let us discuss several aspects that specify the threat model.
Bad Mouthing Attacks: The rogue raters may be controlled by
an organized adversary launching Bad Mouthing Attacks that
give false ratings to true events, causing legitimate events to
get low event trust scores. This not only prevents the published
legitimate event to be deleted but also degrades reputation
of the honest reporters who reported that event. In future,
when those reporters report again, their reports will be ignored
due to their unfairly low reputation caused by bad mouthing
attacks [3]. Such event suppression can cause serious impacts
on a smart city environment. For example, actions required
for serious events may not be taken, and can lead to further
worsening of an emergency/disaster event.
Attack Budget and Adversary Capabilities: The adversary
uses knowledge of defense mechanism and MCS to decide
whether to apply his full budget or not. If purpose is served
without using its full budget, then it is a rational choice for the
adversary. The ‘attack scale’ is the fraction of compromised
ratings to the total number of ratings (from defender’s
perspective). Among N raters that have provided ratings
to a particular truthful event j, suppose K raters are not
compromised by the malicious adversary, while rest N − K
raters are controlled by the adversary. In MCS, the rating
feedback mass N for an event/item is often sparse for three
reasons: (1) when a application is launched initially, the user
base is not very high, reducing the chances of getting a high
feedback mass; (2) lack of motivation or incentives to provide
ratings; (3) due to mobility patterns of users a part of the city
may have a sparse user footprint on specific times of a day.

When N is small, the adversary’s attack budget N − K can
dominate the proportion of the rating sample N leading to
biased event trust scores. The adversary can either compromise
or simply recruit extra N − K malicious raters to the MCS

network. The MCS defender does not know which raters are
compromised although the MCS can assume reasonably that
the adversary would try to dominate the rating population to
ensure event trust score is degraded (i.e., preferably below 0.5).
Adversary assumptions: (1) The adversary knows that the
defender may use a traditional trust scoring method or our sub-
sampling based method. This is following Kirchoff’s principle
in security, that secrecy of a defense mechanism cannot be
assumed. (2) We assume a rational adversary who knows that
there is a true event and therefore a compromised rater’s pe

does not affect the input from a compromised rater. Rationality
also means that if a ghost spam event is generated (by say
selfish users [2]), our adversary refrains from participating in
rating, because it goes against the rationale for bad mouthing.
(3) Adversary has enough budget such that he can manage
majority of the rating population if required. This makes sense
due to the sparse sampling problem in MCS. However, once it
has compromised a rater, it exhausts a resource and it cannot
change it. (4) Adversary possess knowledge about the average
rater population size N at given time/place and the probability
of accuracy, pb, of the honest rating users. (5) An intelligent
rational adversary would always try to maximize his gain
and will not have any strategy that causes a net loss. (6)
Our approach makes sense only when no clear consensus is
available in the rating population. For that we have chosen
the situations where there is split vote of at least 30% or
more for either true or false event. If more than 70% raters
are manipulated then it is a dogmatic system and a mitigation
strategy does not make sense. On the other hand, if more than
70% raters are honest then the full sampling strategy can infer
the correct state and as we show in Fig. 3a, subsample size
from our method converges to the full sample.

IV. Proposed Approach

The proposed approach is divided into four parts: First,
we motivate the MTD and cyber deception approach to our
solution. Second, we show that the strategic situation between
the MCS and the adversary can be modeled into a two
player game theoretic formulation with numerous strategies.
Third, we provide a mathematical analysis of the randomized
subsampling approach and the adversary’s cost benefit analysis
that helps to prune the strategy space of the attacker-MCS
game. Fourth, we solve for best rational equilibrium strategies
of the reduced game for both MCS and the adversary.

A. Randomized Rater Sub-Sampling as MTD

The philosophy of moving target defense (MTD) [1] man-
dates the creation of constantly shifting environments by a de-
fender to introduce asymmetric uncertainty between defenders
and attackers. The Department of Homeland Security, USA
defines MTD as diverse strategies that continually shift and
change over time to limit opportunities for attack, increase the
cost of attacks and/or increase system resiliency. The guidelines
in [1] specify dynamic system randomization at run time as



one overarching option for a defender to constantly change the
effective attack surface.

Classical defense methods focus on host/resource/user level
detection models. But they suffer from scalability and agility
concerns in MCS because: (i) network sizes always vary
rapidly as a function of time due to mobility, (ii) new users
quickly join or leave, and (iii) behavior of users keep evolving.
Therefore, in MCS, it is rather prudent to think about mitigation
of or resilience against attacks rather than focusing on detection
of attacks and identification of compromised users. This is
complicated by the ease of biased ratings that change the event
inference completely, under existing methods.

Motivated from the above, we propose a way to bring ideas
of moving target defense (MTD) and cyber deception into event
trust scoring for a more resilient MCS.

DEFINITION 1: Randomized Rater Subsampling: Our
main idea of dynamic system randomization is we hypothesize
that instead of using all the ratings received for calculating a
trust score, the defender uses a subsample of a strategic size
from the set of ratings received, and then calculates the event
trust from rating counts obtained from the subsample.

Our hypothesis is given credence by the following illus-
tration: Fig. 2a, offers a visual intuition of why randomized
subsampling can mitigate the effects of feedback weaponizing
attacks. We have already established in Sec II-E that if the
majority of the ratings involved are not compromised, the
event trust score progressively moves towards the correct event
status (because of being above 0.5). There are three key
considerations from Fig. 2a. (1) The big outer transparent circle
represents the full sample N (total number of ratings received);
(ii) the medium inner red shaded circle represents a set of
compromised ratings is a subset of N but greater than 50% of
N. (iii) the smallest circles with a tick or a cross represent a
random subsample of a certain size (say n) drawn from the
set N. The tick corresponds to samples where majority of the
ratings in that n sized sample correspond to non-compromised
rating set, while crosses correspond to the opposite.

We can conclude visually that the red circle size is more
than half the outer circle. In this case, a full sample majority
voting will always result in an outcome that corresponds to
what the inner red circle indicates, which will be misleading
and therefore be considered a failure for the defender MCS. In
this case, the defender has zero chances of success in predicting
an event trust score that is greater than 0.5 (for a true event).

However, if the defender picks a randomized subsample
of a certain size n (represented by the smallest circles in
Fig. 2a from set N; there are

(
N
n

)
such possibilities). Without

knowing which ones are compromised, we can see that success
probability is non-zero. and thus better than using the whole
sample. Regardless of the number of selections with ticks, it
is better than zero chance of success using the full sample.

To justify this hypothesis, we conducted a numerical simu-
lation to mimic the following scenario: A true event receives
N = 100 ratings with 48 of them controlled by adversary giving

(a) (b)
Figure 2: Subsampling: (a) Intuition (b) Optimal Sample Sizes

a negative rating and pb = 0.9, pu = 0.05 for the remaining 52
honest raters. We then perform an exhaustive search over the
subsample search space to figure the fraction of times (out of
1000 rounds of iteration) a subsample of a given size contains a
majority of positive ratings (which is the accurate rating for the
concerned event) in that selection. This fraction is termed as
the probability of success, because a majority of true ratings in
a subsample guarantees QoI > 0.5 that is required for inferring
the event correctly.

Fig. 2b, shows the y-axis as the probability of having more
than 50% of positive ratings versus different possible sample
sizes. We can see that the subsample size 16 maximizes
this probability as the above mentioned settings. For another
instance with N = 100,K = 60, pb = 0.8, pu = 0.05 the optimal
sample size is 8. It also shows that even if the adversary
compromised just short of majority of the rating sample, the
classical use of using the full rating sample for trust calculation
causes a probability of success = 0 (the rightmost point on the
x-axis). In this case, 30% of the time, the MCS was successful
in obtaining a trust score above 0.5.

B. Attacker Defender Game

Here we demonstrate that the strategic situation above can
be modeled via game theory.

Defender’s Perspective (MCS): In Section IV-A, we
showed that using a subsample (1 to N − 1) of a certain
size as a strategy by a defender will provide better outcomes
if the majority of ratings are compromised. However, the
defender knows that the adversary possesses the knowledge of
its randomized subsampling approach. Based on this, defender
expects that adversary would re-adjust its strategy to instead
compromise a minority of ratings. Thus, there is a possibility
that adversary might compromise an effective minority of the
population if the defender chooses a sub-sampling approach.
Hence, choosing the full sample, N, could also be a viable
strategy in such a case. Hence, the feasible strategy could be
any number between 1 and N.

Adversary’s Perspective (MCS): The adversary expects the
defender to play a sub-sampling strategy if it compromises a
majority of the ratings. However, it also knows that the 1− pb

is a feature that helps its cause. Thus, to overturn an event
decision, the actual number required to compromise will be
lesser than 51% of the total ratings received.



The adversary also knows that subsampling will provide bet-
ter outcomes for the defender, it might contemplate switching
to a strategy with a minority of ratings compromised. There-
fore, the adversary ‘theoretically’ has an option to compromise
1 to N raters unless (i) subject to an upper bound on its
attack budget; (ii) any strategy where his gain is lesser than
its investment.

To be rational, the defender should select an optimal sub-
sample size if any, that will maximize the probability of success
out of all possible subsample or full sample sizes that could
be potential strategies. The adversary will try to maximize its
net benefit and would avoid any strategy that leads to a loss.
The above presents a huge search space for finding equilibrium
strategies in the attacker defender game. Therefore, our next
effort is to prune the search space of strategies for MCS and
adversaries before we solve the game formulation.

C. Pruning the Defender MCS Strategy Space

Now we provide an analysis of success probabilities with
the randomized subsampling technique with the use of hyper-
geometric distribution [8]. The security status of the rater can
be classified into one of the two mutually exclusive categories;
compromised or non-compromised. Each rater is counted as a
success if not compromised (or failure if compromised). Let
there be K number of non-compromised (honest) and N − K
number of compromised raters in the received rating sample
of size N. Let X be a random variable, denoting the number
of non-compromised ratings in a chosen subsample from the
population. Given that a subsample of size n ≤ N is drawn
from such a population of size N, the probability of observing
exactly k number of non-compromised raters from a population
that originally contains exactly K non-compromised raters, can
be specified by the pmf of a Hyper-Geometric distribution:

P(X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) (5)

The Eqn. 5 assumes that each non-compromised rater is
never wrong in their judgment and produces a correct rating
at all times. However, in the MCS model, each honest rater is
either a human or sensor/drones that are prone to errors (pe)
and uncertainty (pu). Hence, we need to modify the hyperge-
ometric pmf, to find the effective true success probability of
observing exactly k number of successes. Note that for MCS,
success indicates those ratings that contribute to trust, and not
the security status of the raters.

1) Embedding Error of Rating Labelers: To simplify, first
we assume a binary rating system (pu = 0), and then extend the
analysis to ternary rating space in Sec IV-C4. Given exactly
k honest raters are picked in a sub-sample, the chances that
there will be at-least l or more successes (positive ratings) out
of the k, can be modeled by a binomial distribution:

p(Y > l|X = k) =

k∑
j=l

(
k
j

)
(pa) j(1 − pa)k− j (6)

where l is the lower bound required for successes under the
normal fusion rule. For example, in case of majority voting
l = d n+1

2 e (if n is even), and pa is the chance that an honest rater
provides a rating that eventually contributes to the increase
in trust. The interpretation of how pa is calculated changes
with whether a Beta or Ternary Approximation to Beta Trust
is used for event trust scoring and will be elaborated separately
in Section IV-C4.

As l is the lower bound required for successes, based on
whether subsample size is even or odd (n), l needs to be
changed. If sample size is even, l = d n+1

2 e to ensure number of
successes are majority in the selected subsample. In contrast,
if we take odd samples then l = d n

2 e to obtain the majority of
selected subsample. In this paper, we choose a discussion for
even samples only, but it works seamlessly for odd samples
with the only change in equations being l = d n

2 e.
2) PMF of Success under Attacks: Here we derive the pmf

for achieving a success where dominant rating attacks and
errors coexist. Intuitively, the probability mass function will
have a positive value, if there are at least d n+1

2 e honest raters
are in the sample of size n. However, in theory, if the number
of compromised raters is very low, then the minimum of honest
raters in a larger sample size can be greater than d n+1

2 e. The
following is an illustrative example that explains this:
Lower Bound on Honest Raters: Considering two scenarios:
Scenario I: N = 100,K = 40 and Scenario II: N = 100,K = 90
and a candidate subsample size n = 70. For scenario II, the
d(n + 1)/2e = 36. However, given that there are 90 honest
raters, even in the worst case, if all dishonest raters fall into
subsample of size n = 70, the minimum possible honest users
in this selected sub-sample is n − (N − K) = 60. Since 60 is
greater than 36, the lower bound of Scenario II is n− (N − K)
while For scenario I, the lower bound is d(n+1)/2e. Combining
them, lower bound of the number of honest users in a sample
of size n required for a success is:

kmin = max(d
n + 1

2
e, n − (N − K)) (7)

Upper Bound on the Number of Honest Raters: The maxi-
mum possible number of honest raters that can be picked
depends on whether the total number of successes K is larger or
smaller than the candidate sample size. Hence, the maximum
possible upper bound for the number of honest raters:

kmax = min(n,K) (8)

Probability of Success under attacks: The pmf of the resultant
success in having a majority of the rating labels chosen as
authentic labels is given by the following:

P(n) =

kmax∑
i=kmin

(
K
i

)(
N−K
n−i

) i∑
j=d(n+1)/2e

(
i
j

)
(pa) j(1 − pa)(i− j)

(
N
n

) (9)

3) Optimal Sampling Size for Subsampling: Intuitively, the
MCS’ rational strategy should be to pick that sub-sample of



size nopt that maximizes P(n). Mathematically, we can write
the optimal sample size as:

nopt = arg max
n

(P(n)) (10)

Eqn. 10 gives the optimal sub-sample size nopt for a given
N −K (no. of compromised raters) such that the probability of
success is maximized. Hence, among all possible subsample
strategies, the defender will pick nopt since it maximizes its
probability of success. The optimal probability of success
achieved under the nopt is:

Popt = P(n = nopt)

Since we have already shown that the majority of ratings
belonging to the true class is directly related to getting the
desired event trust scores for accurate event truth inference, we
would like to analyze how Beta and Josang’s Models perform
under the evidence extracted from the optimal subsample size.

4) Interpretation of pa in Ternary State Space: Both positive
and a portion of uncertain ratings (the benefit of doubt)
contribute to event trust score. We envision the positive and
the portion of the uncertain ratings that contributes to the event
trust score as a ‘success’ since it contributes to an increase
in the score when it is a true event (from Section II-E).
Hence, pa needs to be expressed in terms of pb and pu. Note
that, the compromised N − K raters always provide negative
feedback. Therefore, the probability of having an honest user
giving a rating that contributes to the event’s trust score is
pbeta

a = pb + pu
K
N . Therefore, the theoretical result on the

probability of success is given by the following:

Pbeta(n) =

kmax∑
i=kmin

(
K
i

)(
N−K
n−i

) i∑
j=d(n+1)/2e

(
i
j

)
(pbeta

a ) j(1 − pbeta
a )(i− j)(

N
n

) (11)

nbeta
opt = arg max

n
(Pbeta(n)) Popt = Pbeta(n = nopt) (12)

where Popt is the optimal probability of success and nopt is the
optimal sample size that produces Popt. In the experiment sec-
tion, we will compare the theoretical result with the experiment
to prove the correctness of the equation. A similar derivation
can be done under Josang’s Belief Model.

D. Pruning of Adversary Strategy Space

In the real world, the adversary may choose not to attack at
all. However, the pe may still cause false ratings and degrade
event trust score. To examine whether this limits the achievable
success, we assessed the effect of optimal subsampling under
no attacks, using a numerical simulation ( See Fig. 3a).
We observed that optimal sample size converges to N (using
Eqn. 11), if no attack is present in the system (regardless the
pb).

If adversary chooses to attack, we can prune its strategy
space: Let the adversary incur a uniform cost, C, for each
compromised rater. Then adversary’s net payoff G is defined
as follows: With just (N−K) compromised raters, the adversary
can overturn a decision worth the same as if it compromised

(a) (b)
Figure 3: Pruning:(a) No attack as a strategy (b) Attacker’s
Gain (pb = 0.7 and pu = 0.25).

all raters N. Therefore, investing (N − K)C, it gains a return
equivalent of NC with a probability (1−Popt), under defender’s
optimal sub-sample size. Thus, G is computed as the difference
between return and investment as:

DEFINITION 2:The net payoff of the adversary
G = (1 − Popt)NC − (N − K)C.

Fig. 3b shows G for each possible value of compromised
raters, when the defender plays its optimal sub sample size for a
given N−K (blue line) and full sample size (orange line). From
Fig. 3b, we make a key observation: when (N−K) is lesser, the
attacker’s net payoff under sub-sampling is larger than a full
sampling. However, the G in all such cases is negative, which
indicates a net loss for the adversary. Thus, we conclude that
a rational adversary will at least want a net payoff to be non
negative, and hence the minimum value of compromised raters
for which G becomes positive is N − Km. Therefore, we can
prune all N −K less than N −Km from the adversary’s strategy
space regardless of defender’s actions.

(a) (b)
Figure 4: Attacker Payoff: (a) Full Sample (b) Sub sample
When defender uses a full sampling strategy: Fig. 4a (or-

ange line) also verifies that choosing N − Km (that gives a
positive G) is also the maximum payoff achievable by the
adversary for any candidate (N−K) > N−Km. This proves that
adversary’s best strategy is to compromise N−Km (Strategy 1)
if the defender plays a full sample.

When the defender chooses the sub-sampling approach:
Fig. 4b (blue line) shows that there is a particular compromised
N − Ks which maximizes the G. This proves that adversary’s
best strategy is to compromise N −Ks (Strategy 2), if defender
chooses to play a sub-sampling strategy.

Note that these choices of N−Km and N−Ks is dependent on
pa, because G is related to 1−Popt, and Popt is directly related
to pa. Fig. 4a and 4b shows how attacker’s payoff changes
with its number of compromised raters, given a pb and pu.
Thus the attacker can compute the number of raters it needs
to compromise that would maximize his gain, by taking the



maxima of the blue and orange lines corresponding to N−Ks =

arg maxN−K(G(n)) and N−Km = arg maxN−K(G(N)) It is evident
from the figures that N − Ks > N − Km or Km > Ks.

We have not included the case of no attacks as there is no
loss for the attacker, even in presence of ratings caused due
to errors on the part of honest users (pe), and the optimal
subsample size from Eqn. 12 still converges to N as shown in
Fig. 3a.

E. Game Theoretic Formulation under Pruned Strategy space

Here we present a game theoretic approach for selecting a
best rational strategy under a complete information zero sum
game between the attacker and defender where both are aware
of pa and N and each other’s possible set of strategies.

The adversary knows that if defender chooses the subsam-
pling strategy it would do so with a subsampling size that
gives Popt. The MCS knows that the adversary has two options
for calculating optimal compromised number of raters that
would maximize the adversary’s gain, for each of its optimal
subsampling or full sampling strategy.

Formally, adversary has two strategies: Strategy 1: Compro-
mise N − Km raters which maximizes G under full sampling
strategy by defender; Strategy 2: Compromise N − Ks raters,
which maximizes G, if defender incorporates the sub-sampling
strategy. The corresponding payoffs for each strategy are cal-
culated in terms of adversary’s gain/loss. The payoffs of the
players are derived as follows:

1) Payoff Calculations for Strategies: We first calculate the
adversary’s pay-offs, given the defender’s strategy.

If the defender plays a full sampling strategy, then the at-
tacker is able to compute the minimum number of manipulation
to overturn the decision of the defender. To perform this, ad-
versary must ensure that K.pa ≤

N
2 . Hence, N−Km = N(1− 1

2pa
)

and the payoff with strategy 1 (i.e. N − K = N − Km) is given
by: G1( f ull) = (1 − 0)NC − (N − Km)C = KmC.

Since N −Km < N −Ks, if the Popt drops to zero at N −Km,
it will remain zero under N − Ks. Therefore, the payoff under
Strategy 2 is given by G2( f ull) = (1−0)NC−(N−Ks)C = KsC.

We now calculate the two pay-offs for the adversary, given
the defender plays an optimal subsampling strategy. Let P1(n1)
and P2(n2) be the maximum probability of success with sub-
sampling method (calculated from Eqn. 12) under adversarial
Strategy 1 and 2, respectively; where n1 and n2 are the ‘cor-
responding’ optimal sampling size selections. For notational
simplicity, we denote P1(n1), P2(n2) as just P1, P2.

So the attacker’s payoffs with strategy 1 and strategy 2 is
G1(sub) = (1 − P1)NC − (N − Km)C = (Km − P1N)C and
G2(sub) = (1−P2)NC− (N−Ks)C = (Ks−P2N)C respectively.
As cost C is a common scaling factor in all the payoffs, the final
payoff matrix of the game is given in Table I after removing C
from all the individual payoffs. In Table I the defender’s (D),
has two strategies: S S stands for subsampling technique and
FS denotes a full sampling approach.

2) Game Solution: We solve the proposed two player zero-
sum game to find the Nash equilibrium. Note, pa ≤ 1 (because
pb, pu ≤ 1), and both 0 ≤ P1, P2 ≤ 1. As Km > Ks, for
the defender there exists a strictly dominating strategy but
the attacker does not have any strictly dominating strategy.
So the defender should always go for sub-sampling method
to minimize his loss/attacker’s gain. Thus, depending on the
values of Km,Ks, P1, P2, a Nash equilibrium can be obtained.

Table I: Complete Information Game.
Adversary

N − Km N − Ks

MCS FS −Km,Km −Ks,Ks

S S −(Km − P1N),Km − P1N −(Ks − P2N),Ks − P2N

Let us illustrate this with an example: Let pb = 0.8,
pu = 0.15. As depicted in the Fig. 4, the N − Km and N − Ks

for the adversary is 40 and 55 respectively. After calculating
the payoffs as described in Table. I, we get the payoff matrix
as shown in Table. II. Clearly, the attacker does not have a
strictly dominating attack strategy but the defender’s SS is a
dominating strategy. Since the attacker’s payoff from strategy
2 is higher than that of strategy 1, he will select for strategy
2, and defender will choose the sub-sampling method as the
defense mechanism with the optimal size corresponding to
Strategy 2, to minimize attackers gain and that will be our
Nash equilibrium.

Table II: Payoff Matrix for pb = 0.8
Adversary

Strategy 1 Strategy 2
MCS FS -55, 55 -45, 45

S S -19, 19 -29, 29

3) Event Trust Scores under Optimal Sample Size: For beta
distribution the trust is calculated based on the

QoIbeta
proposed =

ηα(nbeta
opt ) +

(
ηα(nopt)

ηα(nopt)+ηβ(nopt)

)
.ηµ(nopt)

ηopt + 2
(13)

V. Experimental Results

In this section, we discuss the simulation, followed by
numerical and simulation results.

A. Simulation Settings

We consider a vehicular crowd-sensing application as a
proof of concept by using SUMO (Simulation for Urban
Mobility [14] as a simulation environment. We have extracted
the Open Street Map (OSM) for a small part of Manhattan
city and created the network by considering the following
scenarios: 1) Individual vehicle trips are created randomly in
the selected network with a minimum trip length. 2) Acci-
dents/traffic congestion is created by forcing a vehicle to stop
at certain location and time. As every event has a certain time
window of relevance, we collect the vehicle information in
the vicinity of the reported event. We consider these users as
potential raters who are liable to rate. A snapshot of SUMO
simulation is shown in Fig. 5 where a traffic congestion is
manually created and all the vehicles stranded are considered as



raters. We have considered different rating population sizes but
maintaining N = 100 keeping in mind that the adversary has
a limited budget and an intelligent adversary would attempt to
attack the system only when the N is comparatively low which
would keep his cost low. In each case, we have considered
the compromised rater percentages to be between 30% to
70% for understanding the effect of varying attack scale. The
rationale behind this assumption is based on the factor that if
less than 30% raters are compromised then the gain of the
adversary is minuscule as discussed in the threat model in
section III-B. The pb is varied between 0.7 to 0.95, while the
pu, is varied from 0.25 to 0. The compromised raters would
always submit false ratings every time as they are controlled
by the adversary. As per the attack strategy, these users are
divided into honest and compromised groups and bad mouthing
is performed accordingly. Simulation parameters description is
given in Table. III.

Parameter Symbol Value
Total Ratings N 100-300
Honest Raters K 30%-70%

Prob. true rating (honest raters) pb 0.7-0.95
Prob. uncertain rating (honest raters) pu 0.25-0

Prob. effective true rating (honest raters) pa -
Degree of belief b -

Degree of uncertainty u -
Relative atomicity a 0.5

Optimal Prob. of success Popt -
Optimal sample size nopt -

Cost of compromising 1 Rater C -
Gain of adversary G -

Table III: Parameter Description and Value

Figure 5: SUMO snapshot.

B. Implementation and Metrics of Performance

We evaluate performance over 1000 iterations using the data
collected from the SUMO tool. In each iteration, different
samples are picked to provide an average case performance that
reduces bias. We show results not only for the game (which
contains a strategic N-K) but also all possible N-K values to
give a sense of how our method will perform under adversaries
that may be non-rational or non-strategic.

Finally, for an optimal subsample size for the optimal attack
strategy, raters of that size are randomly selected from the
population over multiple events. In each event iteration, we
calculate the Beta trust score using Eqn. 13. We record the

(a) (b)
Figure 6: (a)Theoretical and simulation results: optimal Sample
for pb = 0.75 (b) Effect of pb over optimal sample size

number of iterations where the event trust score under our
proposed method was above 0.5, which counts as an event
that our method successfully evaded an bad mouthing attack.
This is repeated under all possible (N-K) values.

Metrics: We use the two metrics for performance evaluation:
(i)Probability of Evasion: is the probability that the event trust
score obtained by using the beta trust under our proposed
method (MTD aware approach) gives a score of 0.5 or more
(calculated over 1000 iterations in our simulation), to give
the probability of evading a bad mouthing attack under our
proposed approach. (ii)Boost in event trust score: This is the
raw boost in trust score when our method is used under bad
mouthing attacks, under all possible values of N − k, pb, pu.

C. Optimal Sample Sizes

Fig. 6a shows a comparison between theoretical (from
Eqn. 11) and experimental values of probability of success
(P(n)) when total raters N = 100 and honest raters K = 60,
with pb = 0.75 and pu = 0.05. We can conclude from Fig. 6a
that simulation result closely follows the theoretical result, the
optimal sample sizes nopt from theoretical and experimental
results are similar. In this situation although the honest raters is
60%, still we see that traditional full sample strategy fails with
0 probability of success (the right most point on the x-axis),
because of pe of the honest raters contribute to the adversarial
objective. Thus it allows the adversary to have majority of the
population giving negative feedback by controlling only 40%
of the raters.

The change in the resulting optimal sample sizes for various
K value (which indirectly depends on N −K by the adversary)
over different pb values is shown in Fig. 6b for N = 100
and pe = 0.1. It is evident that optimal sample size changes
with different K and pb. As K.pb increasingly dominates the
population, the optimal sample sizes tend to increase and
eventually reaches N.

D. Performance Evaluation

We divide performance evaluation into two parts: (i) Il-
lustrative Performance and (ii) Average Case Performance.
The illustrative result is for a specific parameter setting while
average case performance evaluation is result averaged over all
possible combinations of parameters involved.



(a) (b)
Figure 7: Probability of Evasion (pb = 0.7 and pu = 0.25): (a)
Theoretical vs Experimental (b) Comparison between Proposed
and Traditional trust scoring

1) Illustrative Performance: We show theoretical versus
experimental results of performance as well as comparison of
our method versus traditional trust score with Beta distribution
for setting N = 100, pb = 0.7 and pu = 0.25 for all N −K. The
performance at equilibrium strategies are also presented.
Theoretical Versus Experimental Performance: The compari-
son of the probability of evading a bad mouthing attack
successfully between theoretical and experimental results is
shown in Fig. 7a, which verifies the accuracy of the model.
Improvement from Traditional Beta Trust: An illustrative re-
sult is shown in Fig. 7b the benefit of our method as opposed
to traditional method in terms of probability of evasion. The
percentage chances of getting event trust above 0.5 under the
traditional beta trust which does not implement our MTD is
compared to the same under proposed beta trust with the MTD
approach. We observe that our proposed method has either
equal or a better chance of evasion of bad mouthing attack
regardless of the N − K inflicted.

Note that where the performance between traditional and
proposed is equal, those are the N − K which are not part
of the rational strategy space of the adversary. From the
game solution, we have the Nash equilibrium where adversary
compromises N − Ks = 60 as marked in the plot and in
that equilibrium, probability of evasion by using the proposed
model is better than the traditional model.

2) Average Case Performance: We provide an average case
performance improvement in terms of probability of evasion
and boost in trust scores, by averaging them over various pb,
pu values for each N−K. Similarly, the average boost in event
trust for using the proposed beta model is shown in Fig. 8a. The
overall improvement in probability of evasion of the proposed
model over traditional model in depicted in Fig. 8b. Please
note that low boost or low improvement in the probability
of evasion is seen for low N − K because, the MCS gets an
advantage regardless of whether MTD is used or not, and is
not an indication of limiting performance of our method.

VI. Conclusion

In this work, we have presented a randomized sub-sampling
method to improve resilience against bad mouthing attacks
even when a large fraction of the rater population (especially
during cold start phase) is compromised by a strategic adver-
sary. We showed that there exists an optimal sample size that

(a) (b)
Figure 8: Improvement over Traditional Method (a) Trust Score
Increase (b) Probability of Evasion Increase

produces an increase in event trust for each potential value of
total compromised raters. Finally, we modeled the problem as
a two player zero sum game to conclude that there exists a
pure strategy Nash equilibrium. We also showed improvement
in terms of evading the effect of bad mouthing attack and the
boost in event trust under such attacks. In future, we will study
whether the approach applies to a setting where ballot stuffing
and bad mouthing both are equally likely under a sparse sample
setting where adversary can dominate the feedback apparatus.
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