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Abstract—False power consumption data injected from com-
promised smart meters in Advanced Metering Infrastructure
(AMI) of smart grids is a threat that negatively affects both
customers and utilities. In particular, organized and stealthy
adversaries can launch various types of data falsification attacks
from multiple meters using smart or persistent strategies. In this
paper, we propose a real time, two tier attack detection scheme
to detect orchestrated data falsification under a sophisticated
threat model in decentralized micro-grids. The first detection
tier monitors whether the Harmonic to Arithmetic Mean Ratio of
aggregated daily power consumption data is outside a normal
range known as safe margin. To confirm whether discrepancies
in the first detection tier is indeed an attack, the second detection
tier monitors the sum of the residuals (difference) between the
proposed ratio metric and the safe margin over a frame of multi-
ple days. If the sum of residuals is beyond a standard limit range,
the presence of a data falsification attack is confirmed. Both the
‘safe margins’ and the ‘standard limits’ are designed through
a ‘system identification phase’, where the signature of proposed
metrics under normal conditions are studied using real AMI
micro-grid data sets from two different countries over multiple
years. Subsequently, we show how the proposed metrics trigger
unique signatures under various attacks which aids in attack
reconstruction and also limit the impact of persistent attacks.
Unlike metrics such as CUSUM or EWMA, the stability of the
proposed metrics under normal conditions allows successful real
time detection of various stealthy attacks with ultra-low false
alarms.

Index Terms—Statistical Anomaly Detection, Cyber-Physical
Security, Smart Grid, False Data Injection, Data Falsification.

I. INTRODUCTION

Advanced Metering Infrastructure (AMI) is a key compo-

nent of the smart grid technology, that measures data on loads

and electricity (power) consumption of customers [19]. Such

data are measured by smart meters installed at the customer

site. The AMI data is expected to play a decisive role in the

accuracy of critical tasks such as automated billing and pricing,

demand forecast, automated demand response, load adjust-

ments, and management of daily and critical peak shifts [33].

Therefore, the integrity of AMI data is indispensable.

Several real incidents of isolated and organized data falsi-

fication and their losses to the utilities have been reported in

[31], [32]. Existing research on defense against the falsification

of power consumption data has been mostly restricted to

electricity theft, [8], [12], [15], [27] where individual meters

report lower than actual usage. Since smart meters belonging

to rogue customers reduce the actually measured reading of

power consumption, such an adversarial strategy is termed

as a deductive mode of data falsification. However, recent

works in this area [2], [20], and recent real case studies [28],

have recognized the possibility of additive and camouflage

modes of data falsification as well. In additive attacks, higher

than actual power consumption can be sensed by a meter as

a byproduct of static and dynamic load altering attack [20]

or hardware tampering, affecting both customers and utilities.

For camouflage attacks, the total margin of deductive attacks

is balanced by the additive attacks, such that one set of

customers benefit with lesser bills at other’s expense, while

ensuring that the mean aggregate power consumption from a

microgrid remains practically unchanged. Therefore, a defense

is required against all three modes of attack.

Additionally, due to the economic and civilian impacts, the

AMI could be a target of powerful stealthy adversaries, such

as rival nations [9], utility insiders [32], organized crime [29]

and business competitors [9], [35], who possess the ability

to compromise several smart meters (as in [32]), alter smaller

amounts of data per meter, to avoid easy detection (from prox-

imity, consensus, or classification based detectors) while sig-

nificantly impacting operations in the long-term [9], [12], [32].

Furthermore, stealthy or persistent adversaries may possess

partial knowledge of usual security mechanisms or complete

knowledge of the actual defense mechanism, thus enabling

them to employ stealthier falsification strategies. Due to the

aforementioned competence, the realistic strategy space for

data falsification is much larger than what has been assumed

by existing research in this field. Nonetheless, apart from cyber

attacks, false data from smart meters can be easily launched

through physical attacks (by physical/wireless tampering of

hardware; e.g. optical ports, rewiring etc.,) on the smart meters

(as committed in 2012 Puerto Rico attack [29], [32]) or

through optical probe toolkit shown by analysts at InGaurdians

Inc. [29]. Hence, cryptography [26] or network based intrusion

detection is not enough to counter this problem.

Contributions of our work: In this paper, first we discuss

some possible stealthy strategies to launch additive, deductive

and camouflage modes of data falsification. To detect the

presence of organized data falsification attacks, we propose a

two-tier, light weight, real time, statistical anomaly detection

scheme that detects the presence and mode of various attacks.

The first tier uses a Harmonic Mean to Arithmetic Mean Ratio

metric of the aggregate power consumption data, to identify

discrepancies in the time series behavior. The second tier uses

the Sum of Residual under the Ratio Curve metric to confirm
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whether the discrepancies in the first tier is indeed an attack or

not. The second tier is particularly relevant when the effective

margin of false data introduced by the adversary is very low

and higher detection sensitivity needs to be achieved without

degrading false alarm performance.

Subsequently, through a system identification phase, we first

establish the ‘normal behavior’ of the two proposed metrics

under no attacks. The normal limits of Harmonic to Arithmetic

mean ratio metric is termed as a ‘Baseline Safe Margin’

and the limits of Sum of Residuals under the Ratio Curve

is termed as ‘Baseline Standard Limit’. These metrics and

their normal limits are carefully designed from real datasets,

such that their values when observed under attacks, deviate

from their normal limits with a high sensitivity. Then, we

establish theoretical properties of the proposed metrics that

trigger unique signatures under each mode of attack and

type of adversarial strategy. Finally, we propose an attack

reconstruction scheme using observed changes in the direction,

sign and magnitude of the proposed metrics to associate

the signatures with different attack types that could guide

site security officers or demand control mechanisms for a

suitable response. Thereafter, to mimic persistent adversaries

with complete knowledge about our defense mechanism, we

design attack strategies that will just ensure evasion. Against

such persistent adversaries, we quantify our performance by

the extent to which we limit the attacker’s impact of attack

(e.g. revenue accrued per unit time), while preserving ultra-

low false alarm rates while accounting for base rate fallacy.

We validated our approach through experiments on real data

sets acquired from an actual AMI infrastructure from Texas,

USA (800 houses for 3 years) and Dublin, Ireland (5000
houses for 535 days). Most of the results correspond to the

Texas data due to longer duration, while Irish dataset is used

to prove the generality, scalability and sensitivity trade-offs.

Results show that our model is able to detect, decipher, and

confirm various attacks launched by stealthy and persistent

adversaries in real time across different datasets. We show

that our model is particularly robust to different fractions of

compromised meters and very low margins of false data which

is typically a problem with existing mechanisms.

Both the proposed detection metrics are privacy non-

intrusive by design, since they do not require profiling of

fine grained customer specific data. Both metrics are more

stable invariants of power consumption across multiple AMI

datasets, which achieves high detection sensitivity and ultra-

low false alarms simultaneously. Existing works in this area,

do not implement novel falsification strategies, do not assume

stealthier margins of false data (≤ 400W ), do not assume wide

variation in the fractions of compromised meters (5%-70%),

do not assume persistent adversaries that have full knowledge

of defense mechanism, or do not emphasize on real time

detection. We quantified detection limits and impact resilience

to justify the improvement.

The paper is organized as: Section II discusses limitation of

related work, Section III discusses the threat model, Section IV

describes the dataset and the system, Sections V and VI

discusses the proposed method and its theoretical analysis

respectively, followed by experimental results in Section VII.

II. SOME LIMITATIONS OF PREVIOUS WORKS

Existing research on data falsification from smart metering

infrastructure can be roughly classified into Classification

based detection, State Estimator based detection, and Con-

sensus based Detection. which are confined to the study of

electricity theft (deductive falsification).

Classification based approaches [7], [8] include multi-class

Support Vector Machines (SVM), Neural Networks, Radial

Basis Function based models. Classification based schemes

are computationally intensive, require full and fine grained

profiling of each smart meter, not scalable for real AMI sizes,

and do not provide real time detection. A comparative study

of all classification based schemes in [6] concludes that while

these schemes require full and continuous profiling of every

customers’ energy consumption, the detection rates of most of

these schemes are approximately 60%-70%. Moreover, only

two schemes provide a quantitative false alarm rate.

State based detection [5], [10], [13], need extra hardware

deployed at different places in the AMI and the distribution

grid for sanity checking [6]. Extra hardware required is costly

to the extent that it “has been recognized as a practical

deterrent for utility providers to use such solutions in scale as

reported by [30]”. Some research proposes checking the non-

technical losses (NTL) at transformer meters. However, [6]

observes that NTL values vary due to a large number of factors

other than attacks and hence also suffers from high false alarm

rates. Also, NTL approach fails to detect camouflage attacks

or additive attacks induced through load altering [2].

Consensus (Aggregate) based detection include mean ag-

gregate outlier inspections, non-parametric measures such as

Exponential Weighted Moving (EWMA) and CUSUM Control

Chart (CUSUM) of the aggregates, and parametric measures

such as Auto Regressive Moving Average (ARMA) models,

to detect false data injection. The comparisons could be either

instantaneous or historical consensus. If the difference between

predicted consensus and the observed consensus (often called

as residual) is above a threshold, then attack is inferred. Works

such as [15], [25], [27], use mean or median power consump-

tions or compare proximity of meter readings to the mean

and standard deviation of power consumption. ARMA based

models [15] analyze each customer meter’s time series data

separately to increase accuracy, using ARMA-GLR detector.

However, in many practical cases, the consumption cannot be

accurately modeled as an ARMA process as mentioned in [8],

[15], resulting in success rates of 62% only. Consensus or

Aggregate based approaches usually do not require separate

profiling of every meter, or additional hardware, hence much

less costly and feasible than the other two approaches.

Weaknesses of Consensus Methods under Stealthy Attacks:

Many aggregate or consensus based mechanisms, use non

parametric statistics like EWMA and CUSUM [13], [15]

and parametric statistics like ARMA [15] to ‘smoothen’

the mean power consumptions to get a stable estimated

trend, which is compared with observed sample consensus or

per meter mean sample measurements for attack detection.

However, we observed some general difficulties with these

approaches. Figure 1, shows arithmetic mean of the power
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consumption from our real data set [34] for the same time

period for three different years. Note, that the mean power

consumptions readily vary over time within the same year.

Additionally, there is a large difference between the means

on the same days in successive years. Such large variations in

mean consumptions create two major roadblocks. First, false

alarms or missed detections are more (depending upon the

chosen weights of different statistics), due to the inherently

unstable nature of the mean consumption. Secondly, the

normal ‘residual’ difference between actually observed

sample and the ’smoothened’ mean consumption is large

(above 130W from our studies), giving ample opportunities

for the adversary to induce changes in such metrics that stay

within the normal residual difference, while still accruing

substantial attack impact. As an example, for a micro-grid of

200 meters, suppose 40% of them have been compromised.

Then an average margin of false data of 325W from each

compromised meter, introduces an average error residual of

130W in the mean. The calculation is shown in Appendix

B. In other words, it is difficult to identify such an attack

given the large legitimate variation of metrics derived from

mean/median measures. However, at the same time the

monetary (loss) impact of this attack is RR = 75 dollars/day.
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Fig. 1. Instability of mean power consumption

Furthermore, approaches such as [2], [8], [25], [27], that

compare whether individual meter’s data is within the standard

deviation fail, since an average falsification margin of 325W
is much lesser than the typical standard deviation of the power

consumption datasets (≥ 400W [34], [36]). Thus in most

existing works, assumed margins of false data ranges between

400W upto 1500W and detection rate sharply degrades to

zero for margins less than 400W . Powerful and stealthy ad-

versaries having a higher initial attack budget can compromise

a larger number of meters and/or inject lower margins of

false data (below the standard deviation) per meter, to remain

undetected while gaining incremental benefits in the long

term. Hence, approaches based on proximity of data within

estimated instantaneous or historical mean and/or standard

deviation of aggregates fail under lower margins of false data.

Furthermore, reports on 2012 Puerto Rico attack [29], [32],

indicated that it is possible to compromise a large fraction of

smart meters. Finally, due to the instantaneous smoothening

of the consensus measures, the danger of the instantaneous

residual difference being within the normal residual limit is

increased when attackers increase their falsification margin

incrementally over each time slot. For all the above reasons,

solutions from traditional sensor networks or control systems

cannot be borrowed. Given these limitations, there is a need for

a real time, light weight, anomaly detection which is focused

on detecting orchestrated attacks from multiple number of

meters particularly with lower margins of false data. This

motivates us to propose a novel scheme that provides security

forensics to detect various falsification attacks in AMI with

ultra low false alarms. Note that our approach while focusing

on low margins of false data, also works for higher margins.

III. THREAT MODEL

False power consumption data could be achieved by ma-

nipulation of (i) inputs into the meters, (ii) data at rest in

the meter, or (iii) in-flight from the meter. If an adversary

is able to capture the data collectors/hops over the mesh

network that connects AMI with the utility, it may be easier

to intercept larger number of unique meter’s data without

physically compromising many meters.

Scope: We assume an orchestrated attack where an organized

and powerful adversary launches data falsification from several

compromised smart meters concurrently. The emphasis is

especially on adversaries that are more inclined to keep the

margin of false data smaller while having a higher number of

compromised nodes M to affect a long-term damage while

avoiding easy detection. Since AMI is a new research area,

large scale real world malicious samples are hard to find.

Therefore, we generated attack samples over our real dataset,

assuming an unbounded strategy space that does not favor our

defense mechanism and shown the detection limits. Proposed

method does not intend to detect isolated uncoordinated at-

tacks or detect isolated rogue customers, since such a problem

has been investigated by numerous previous works.

A. AMI Data Falsification Attack Modes

Let P i
t (act), be the actual/authentic power consumption

measurement from a meter i at time slot t that is unknown

to the utility, while P i
t is the reported power consumption

which the utility receives. Under no falsification, the reported

consumption data P i
t = P i

t (act) is unbiased, while under

attacks P i
t is biased by the following falsification modes:

Deductive: The adversary reports P i
t = P i

t (act) − δt, where

δmin ≤ δt ≤ δmax is a false bias, amounting to electricity

theft.

Additive: The adversary reports P i
t = P i

t (act)+δt. An additive

attack could be launched by a competing utility on its rival

company’s meters, inducing loss of business confidence by

the customers of the victim utility, due to higher than actual

bills. Furthermore, if a victim company participates in auto-

mated demand response, load may be changed by a Dynamic

Load Altering attack [20], causing multiple smart meters to

sense/record higher than actual consumption concurrently. The

victim company ends up paying undue incentives for resultant

peak shifts. A recent report in [31], showed utilities facing

lawsuits by customers accusing unfairly high bills.

Camouflage: The adversary divides the compromised meters

into two teams equal in number, which simultaneously adopt

an additive and deductive modes of attack, respectively. This

mode favors one set customers at the expense of others.

It cannot be detected by simple mean based comparison

approaches, because no suspicion is raised due to negligible

change in the aggregate mean consumption.
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B. Margin of False Data and Fraction of Compromised Meters

All δt are generated randomly within an interval

[δmin, δmax]. Let δavg be the average value of δt for each

compromised meter, termed as margin of false data, whose

magnitude depends upon the time horizon of the intended

attack and damage. Hence, δavg is part of the adversarial

strategy. All units of δavg values are in Watts and lower values

are more stealthy. For a smarter attack, the distribution of δt ∈
[δmin, δmax] should be a variant of some uniform distribution

such that the resultant change in shape of the distribution of

AMI consumption data is not very obvious [8]. Given the

unimodal nature of power consumption in a residential AMI

network [2], [8], any intelligent attacker would refrain from a

strategy that would make the resultant distribution multi-modal

or in general alter its shape. As an illustration, a comparison

between normally distributed and uniformly distributed δt
with the same δavg , and its effect on the resultant shape

of the distribution is depicted in the Appendix C. Note that

our detection scheme works under both cases. However, our

results consider variants of uniformly distributed case, being

the smarter strategy.

We assume that organized adversaries compromise a certain

number M out of N smart meters, depending on a total attack

cost budget represented by TC. The fraction of compromised

nodes is ρmal =
M
N . Given a microgrid of fixed N meters, we

use different values of M to study sensitivity to various attack

budget. Separately, for an adversary with a given M , we vary

N to study scalability of the proposed solution.

C. Revenue (Impact) of an (Undetected) Attacker

The attacker’s revenue per day denoted by RR, defined

in terms monetary worth of electricity power (in dollars),

quantifies its benefit from an attack. Revenue RR per day

in dollars is defined as:

RR =
δavg ×M × η × E

1000
(1)

where η is the number of reports a day, and E = $0.12 is

the average per unit (KW-Hour) cost of electricity in USA.

Additionally, we define breakeven time TBE , as the time

required for the total cumulative revenue accrued from attacks

to match the initial total attack cost TC.

D. Stealthier Data Falsification Strategies

Unlike the existing works that assume a random noise

as falsification strategy, we assume some stealthy strategies

that may be inspired by partial knowledge of usual security

mechanisms or complete knowledge about the actual defense

mechanism.

Data Order Aware Attack: is motivated to minimize chances

of detection against mechanisms utilizing proximity (distance)

of reported data from meters with historical data or consensus.

In Fig. 2, the green line corresponds to the actual power

consumption from the compromised meters. The black and

red lines correspond to falsified consumption data following

a non-data order aware and a data order aware strategy under

same δavg and ρmal. Even as the same revenue is achieved

with both strategies, the chances of detection (using proximity

based mechanisms) are lesser in data order aware strategy due

closer proximity to the actual data.
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Fig. 2. Illustration: Benefit of Data Order Awareness

This strategy is implemented in the following manner: The

adversary sorts the actual power consumptions observed from

its set of M compromised meters such that P
(1)
t (act) ≤

, · · · , P
(m)
t (act),≤ P

(M)
t (act). Then adversary generates M

random numbers for δt, sorted as δmin
t ≤, · · · ,≤ δmax

t . For

an additive attack, the lowest observed power consumption

data is changed with the highest δmax
t , while highest observed

power consumption data is modified with lowest δmin
t , and so

on, such that P
(1)
t (act) + δmax

t , · · · , P
(M)
t (act) + δmin

t . For

a deductive attack, the highest observed power consumption

data is changed with the highest δmax
t , while the lowest

observed power consumption data is changed with the lowest

δmin
t . Hence, P

(1)
t (act)−δmin

t , · · · , P
(M)
t (act)−δmax

t . For a

camouflage attack, the sorted P
(1)
t (act) ≤, · · · ,≤ P

(M)
t (act)

is divided into two parts, and corresponding portions are

changed accordingly. This kind of attack therefore, is more

aware of the current consumption trends as seen by the meters

under adversarial control and minimizes the chances of the

final reported value to be obvious outliers and more close to

the actual power consumption distribution.

Incremental Evolving Attack: Instead of immediately falsi-

fying data with the intended δavg, adversary incrementally

increases margin of false data by ∆q watts on every time slot,

leading upto the intended δavg. A gradual change on every

time slot causes the approaches based on instantaneous moving

averages to fail, since the average readjusts itself within the

detection threshold continuously.

Persistent Attacks: These are strategy parameter pairs of

(ρmal, δavg) for which the adversary would persist in the

system undetected for our proposed defense mechanism. When

the adversary has knowledge of the exact defense mechanism

and the detection thresholds used, it can estimate (ρmal, δavg)
pairs that will just ensure evasion. Axelsson et.al. [1], in his

seminal paper on intrusion detection termed this as ‘security

of the detector’, as an evaluation property that quantifies the

risk, should the detection mechanism be leaked. Since the

adversary never gets detected in such cases, the security of our

proposed approach is evaluated by quantifying the extent to

which we limit the impact of an undetected attack or reduce

the undetectable strategy space versus relative frequency of

false alarms. We define breakdown point, as the δavg and ρmal

pair for which the proposed defense model just fails to detect

an attack and examine the RR and TBE at these breakdown

points.
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IV. DATA SET AND SYSTEM MODEL DESCRIPTION

We utilize real AMI datasets from two sources. The first

dataset is collected from Pecan Street Project [34] consisting

of 800 houses for a period of 3 years (2014, 2015, 2016) in

Texas, USA. The second dataset is taken from Ireland Social

Sciences Data Archives [36] consisting data from 5000 houses

for a period of 535 days (around 2 years) (2009-2010) from 6

regions around Dublin, Ireland. All data belong to residential

customers. Since the Irish dataset was for a limited time, a

longitudinal study on it was not feasible. Hence, most of the

learning methods in this paper utilizes the first dataset. In

contrast, the second dataset is used to test the generalizable

nature, sensitivity and scalability of our proposed detection

mechanism to other AMI datasets that have a completely

different population size, climate, and habits. Unless stated

explicitly, all results by default correspond to the Texas data.

Data Distributions: Let P i denote the steady state power

consumption distribution of any meter i. Investigations on

real hourly power consumption data sets [34], from different

microgrids, shows that each P i follows an approximate log

normal distribution. Figs. 3(a) and 3(b), show the example

of data distributions for a 200 meter population from Texas.

It is observed that such log normal distributions are closely

clustered to each other such that the variation among them

is not arbitrarily large, as seen in Fig. 3(a). Given this

observation, it can be argued that the combination of the

individual log normals can be well approximated by a mixture

distribution that is also log-normal [2], as seen in Fig. 3(b),

which shows the trend for the mixture distribution (Pmix) of

the power consumption of all houses. The shape indicates an

approximate lognormal distribution.

To address concerns on the generality of these observations,

we repeat the above for the Irish dataset. Fig. 4(a) refer

to power consumption distribution of individual houses in

the Ireland dataset, whose mixture distribution counterpart is

shown in Fig. 4(b). The results clearly indicate that aggregate

power consumption across multiple data sets from different

regions follow a particular trend that generalizes. Hence, the

validity of our experimental work is preserved regardless the

dataset. Our findings are also corroborated by another work

[21], with similar results obtained from a different data set.

Hence, it can be safely concluded that the observed trend is

generic rather than being specific to one data set.
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Fig. 3. Power Consumption (Texas, US): (a) 200 houses (b) Mixture Pmix

Box-Cox Transformation: We converted Pmix into an ap-

proximate Gaussian distribution using a box cox transforma-

tion technique. Box Cox transformation techniques are used

for approximating non-normal data into a normal distribution.

Hence, all power consumption data is transformed onto a
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natural logarithm scale to obtain an approximate Gaussian

distributed random variable denoted as pmix. Therefore, we

denote pit = ln(P i
t + 2) as the effective power consumption

data from each i on an ln scale at any time slot t that is used by

the detection scheme. All t’s are slotted hourly in our dataset

which is usual practice as reported in several works [8], [15].

Additional results of this approximate normal mixture model

for different months in the recent past and the QQ plot (for

normality test) is depicted in the figures in Appendix A.

The box-cox transformation serves a dual purpose. The

transformation to a lower dimensional real axis, increases rela-

tive sensitivity to the change in Harmonic Mean to Arithmetic

mean ratios because some interesting statistical properties are

more prominent in a lower dimensional real axis. Secondly,

Gaussian approximation helps in the approximation of some

mathematical bounds more tractable. For Texas and Irish

data data, 67.7% and 66.9% of the samples are within the

first standard deviation, meaning the separation among data

points are reduced. However, the transformed datasets remain

unbalanced around the mean as 64% and 69% of the samples

are on the left (i.e., lesser than) of the mean and 36% and 31%
of the samples are the right (i.e., greater than) of the mean,

for Texas and Irish datasets respectively. Due to this inherent

asymmetry, more data points (even after transformation) are

on the left side (i.e., less than) of the mean. This is a factor that

triggers unique signatures under attacks (see Section VI-B).

Fig. 5. AMI: Generic System View

Deployment Issues of proposed Detector: The exact topol-

ogy of the AMI was not revealed by any of the projects

from where the data was collected. Hence, it was infeasible to

directly study implications of topological aspects over the pro-

posed detection mechanism. Given an AMI system (see Fig 5),

any proposed intrusion detection module can be implemented

in a decentralized or centralized manner in an AMI network as

reported in [3], and micro-grid size affects the sensitivity of the

attack detection. In a decentralized implementation, a detection

module is usually deployed in either FAN (field area network
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if present) or NAN (neighborhood area network) gateway,

that guards different smaller micro-grid subnets within the

whole AMI network separately, while a centralized module

is deployed in the Utility WAN gateway having a global view

of a larger size of meters. Decentralized detectors have the

advantage of more relative detection sensitivity and easier

localization of the compromised parts of the AMI. To capture

both implementation variations, we show results for both 200

and 800 houses from Texas that mimic different implementa-

tions respectively. For Irish datasets, various subsets sizes from

200 to 4000 were studied as decentralized implementation

variants (the latest edge device DCN-3000 handles atmost

1000 houses [37]). We concluded that our detection method

is best suited as a decentralized edge solution.

The technical contribution of this paper is divided into two

sections: (a) Proposed Methodology: explaining the two-tier

Pythagorean mean based detection scheme; (b) Theoretical

Explanation and Properties: explaining the relationships be-

tween various Pythagorean Means (Harmonic and Arithmetic

Means) that trigger deviations in the proposed metrics ‘un-

der various attack modes’ and formalizes them as a set of

properties/lessons. Using lessons/properties learned from such

explanation as a basis, we justify how and why the proposed

methodology is successful in detecting stealthy attacks and

provide reasoning on the invariance of the proposed metrics

over time and across datasets. Such separation of methodology

from the theory has been done to elucidate a step by step guide

when one intends to implement our approach.

V. PROPOSED METHODOLOGY

We propose the use of daily aggregate Harmonic Mean

to Arithmetic Mean Ratios as a Tier 1 metric for anomaly

detection. Using a two year long real dataset, we first establish

that our Tier 1 metric is very stable under normal conditions,

without requiring any smoothening procedure and is scalable

for different datasets. Then, we define the normal limits of the

proposed Ratio metric (termed as Safe Margins) by empirically

studying the ratio distribution. Subsequently, we propose the

sum of residual distances between the instantaneous ratio

samples and the chosen safe margin (termed as Residual

Under the Curve (RUC)) as a Tier 2 metric for the same

two years. We derive the normal limits of the RUC metric

(termed as Standard Limit) from the historical data which is

simplified due to the inherent stability of these metrics. The

study of normal behavior of proposed metrics, safe margins

and standard limits under no attacks is termed as the ‘system

identification’ phase. The safe margins and standard limits act

as detection thresholds. Then, we propose a two tier attack

detection scheme. The first tier checks whether the daily ag-

gregate Harmonic Mean to Arithmetic Mean Ratios, are within

the established safe margins. Once, there is an anomalous

deviation in the first metric, the directional deviation of the

second metric from the standard limit is used to confirm

the presence of organized data falsification or rule it out

as a legitimate change. The two tier approach is required

to increase the detection sensitivity for low attack strengths

without increasing the false alarms.

A. System Identification of Invariants

In statistical anomaly detection, identifying the normal

behavior of the detection metric under no attacks is termed

as system identification. A more stable detection metric (i.e.

invariant) under ‘normal’ conditions is often more accurate.

We denote pt = [p1t , · · · , p
N
t ], as the power consumption

data on the ln scale obtained from N meters at any time slot

t. Let p denote the steady state mixture random variable, such

that pt is the realization of p at time t. The harmonic mean

and arithmetic mean of pt on a particular time slot t is denoted

by HMt and AMt and are defined as:

HMt =
N

∑N
i=1

1
pi
t

AMt =

∑N
i=1 p

i
t

N
(2)

1) Harmonic to Arithmetic Mean Ratios: First, all HMt

and AMt are calculated for each time slot t, over a time

window indexed by T . Each T composed of 24 time slots,

represent each day of a year, such that T ∈ {1, · · · , 365}. At

the end of each window T (one day), the average Harmonic

mean to Arithmetic mean ratio denoted by Qr(T ) is given by:

Qr(T ) =

∑24
t=1 HMt(T )

∑24
t=1 AMt(T )

∀ T ∈ {1, · · · , 365} (3)

where 0 ≤ Qr(T ) ≤ 1, since
∑24

t=1 HMt(T ) ≤
∑24

t=1 AMt(T ), due to the well known Pythagorean mean

inequality, HMt ≤ AMt.
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Fig. 6. Legitimate HM/AM Ratio: (a) 200 meters (b) 800 meters
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Fig. 7. Irish Data (5000 meters; 6 regions): (a) Ratios (b) Ratio Distribution

Figs. 6(a) and 6(b) shows the proposed ratio metric, Qr(T ),
for two different meter population sizes 200 and 800 meters

respectively; for years 2014 and 2015 from Texas, without

using any moving average smoothening mechanism. This is

in sharp contrast to the arithmetic mean trends shown earlier

in Fig. (1), that fluctuates readily for the same dataset over

the same time periods. To validate the generality of this

observation, Fig. 7(a), shows the time series of Qr(T ) for

a completely different (Irish) dataset with 5000 meters from

six regions. Figs. 6(a), 6(b) and 7(a) indicate that Qr(T ) is a
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highly stable metric making it suitable for anomaly detection.

Thus, it is established that legitimate changes that affect the

mean power consumption, does not significantly affect the

daily average ratio between HM and AM .

The reasoning behind the stability observed in the ratio sam-

ples is related to the coarse grained weak positive correlation

in the daily granularity time scale and we show it later in

Section VI-A with real datasets. Another reasoning behind

using this metric for attack detection is the asymmetric growth

and decay rates of harmonic means compared to arithmetic

means that are derived from the exclusive Schur-Concavity

properties of harmonic means. The proof of this and resultant

attack detection properties are derived and established in detail

in Section VI-B.

Finally, it can be observed that the Qr(T ) time series show

a weak cyclo-stationarity in the sense that the mean ratio is

similar during the same window T in successive years. Further

time series smoothening may reduce jitters and false alarms,

but invariably falls into the trap of incremental evolving

attacks. Instead, we take a different approach to reduce false

alarms without sacrificing missed detection using the proposed

RUC metric as discussed later.

2) Safe Margin for Ratio Metric: The distribution of all

Qr(T ) samples for meter populations of 200 and 800 respec-

tively for the 2 years is Gaussian distributed (See Appendix

F). The mean and standard deviation of the ratio distribution

for 200 meter case is µr = 0.917 and sr = 0.0085, with

69.57% of the ratio samples within the first standard deviation

from µr. The percentage of ratio samples within the second

and third standard deviations are 96.03% and 98.95%. The

corresponding (µr, sr) values for 800 meter population is

(0.906, 0.007), and µr ± 2sr contains 97% of the samples.

Fig. 7(b), shows the ratio distribution for the 5000 houses

irish dataset to be similar to ratio distribution of Texas data. A

comparison between Figs. 6(a) and 6(b) show that ratio metric

is less stable for lower sized meter populations. Intuitively,

detecting low margin attack signature in 200 meter population

will be more difficult. Hence, we show more results for 200

meters representing the worst case.

Defining a threshold parameter, κ ∈ (0, 3sr], we build a

‘safe margin’ as an interval around the observed instantaneous

ratio samples Qr(T ), on every time window on the historical

(training) datasets. Hence, the upper and lower limits of the

safe margin boundary denoted by Γhigh(T ) and Γlow(T ) are:

Γhigh(T ) = Qr(T ) + κ (4)

Γlow(T ) = Q
r(T )− κ (5)

Larger κ values produce wider safe margins. An obvious

approach to minimize false alarms would have been to set

the κ to maximum or minimum observed values in Qr(T )
distribution. Such wide safe margin would in turn increase

missed detection for stealthier attacks having lower δavg and/or

ρmal. For example, a κ = 2sr, instead of κ = 3sr, will

have more detection sensitivity but on average about 4.5%
legitimate observed ratio samples would be outside this safe

margin, which is still an unacceptable false alarm rate for good

anomaly based intrusion detectors [1]. To bypass this problem

(known as base rate fallacy), we now propose another metric

called RUC, for the second tier which preserves increased

detection sensitivity without sacrificing false alarms.

3) Sum of Residuals between Ratio and Safe Margin:

We propose another metric that maintains, at each time win-

dow T , the sum of the residuals between the ratio curve and the

chosen safe margin (denoted by RUC(T )) over a sliding frame

of past FS days. To calculate RUC(T ), we first calculate

∇(T ) that denotes the ‘signed residual distance’ between the

observed ratio and the safe margin by:

∇(T ) :











= Qr(T )− Γhigh(T ), if Qr(T ) > Γhigh(T );

= Qr(T )− Γlow(T ), if Qr(T ) < Γlow(T );

= 0, otherwise;
(6)

The ∇(T ) value could be positive or negative depending on

whether the instantaneous ratio sample is above the upper safe

margin Γhigh(T ), or below the lower safe margin Γlow(T ).
The ∇(T ) is zero, if the value of the ratio observed is within

[Γlow(T ),Γhigh(T )]. Given this, at any window T , we propose

to keep record of the sum of the residual distances RUC(T )
over a sliding frame of the past FS days, such that:

RUC(T ) =

T
∑

j=T−FS

∇(j) (7)

Our second metric, RUC(T ) for the historical dataset

(2014, 2015) is shown in Fig. 8 using a sliding frame of

FS =7 days. The sign of ∇(T ) represents direction of the

change and plays a key role in attack reconstruction as shown

later. The rationale behind keeping such a signed metric is

because for legitimate changes, even when the ratio goes out

of the safe margins, it oscillates between the upper and lower

safe margins, making the RUC(T ) often closer to zero.
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Fig. 8. Standard Limits of RUC with κ = 2sr

4) Inferring Detection Thresholds for Testing Set: From

system identification, we calculate a safe margin parameterized

by κ and a ‘standard limit’ (that depends on κ) acting as the

thresholds of these two metrics. Since these thresholds are

obtained from historical data, we denote them by a superscript

‘h’. For any time window T c in a testing set (current), let

Qr(Th) denote the historical value of the ratio metric on the

corresponding T -th day in the previous years. Let Qr(Th) be

calculated as a weighted average of the ratios samples on the

T -th day in the previous years. Unlike most other schemes,

the choice of weights do not affect performance drastically

since difference between ratios in successive years is minimal

owing to their high stability. We capture both extreme choices
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of weights in our study by giving 0.99 weight to 2015 data

and 0.01 to 2014 for 200 meter case study; and we give equal

weightage to 2014 and 2015 ratios for the 800 meter case

study. We will verify in the results that performance is not

drastically different in either choices of weights. Hence, to

summarize the safe margin for the T -th day (of an year) in

the testing set is Qr(Th) ± κ. For instance, if κ = 2sr, then

the upper and lower margins are Γhigh(T
c) = Qr(Th) + 2sr

and Γlow(T
c) = Qr(Th)− 2sr.

Now, we learn a normal range for the RUC values known

as ‘standard limit’ that is independent of T . Let {RUC(T )y}
denote the set of the sum of residual distances observed in y-th

(training) year, as shown in Fig. 8. Now, we need to choose an

appropriate τmax(h) and τmin(h) as upper and lower thresh-

olds from {RUC(T )y | y ∈ 1, 2}. Suppose τ represents the

appropriate candidate thresholds. The appropriate thresholds

τmax(h) and τmin(h) from the set of RUC(T )y is obtained

by Algorithm 1 and marked in Fig 8 that avoids over-fitting.

The cmax/min and pmax/min are the corresponding cost and

penalty functions used for the τmax (searching among all

non-zero positive RUC(T )) and τmin (searching among all

non-zero negative values in RUC(T )). Notice, the design of

RUC(T ) is such that the search space is very small, due

to very less non-zero RUC(T ) values, which reduces the

complexity of the search problem described via Algorithm 1.

Algorithm 1 Calculate τmax(h), τmin(h)

for T, τ, y do

if (RUC(T )y < τ ) then

cmax/min : |τ−RUC(T )|
2

else

pmax/min = 2|RUC(T )y − τ |
end if

end for

τmax/min(h) = argminτ |c− p|

B. Tier One Detector

While designing the safe margin criterion, we utilized an

interval κ from the historical ratio distribution. If the observed

ratio is outside this safe margin, we declare a suspected

anomaly. Let c denote the current (testing) year (2016 in our

case). Then, if the observed ratio sample of the current time

window Qr(T c) is within the interval [Qr(Th) ± κ], then

the situation is considered normal. If not, then an anomaly

is suspected.

Qr(T c) :

{

∈ [Qr(Th)± κ] No Anomaly;
6∈ [Qr(Th)± κ] Anomaly Suspected;

(8)

where T c is the current time window, Th is the corresponding

time window of the prior year, Qr(Th) is the corresponding

historical ratio value in the previous years for the same window

T , and Γhigh(T
c) and Γlow(T

c) are the safe margins at T c

day of the testing set.

C. Tier Two Detector

Given that the ratio metric was off safe limits and the

RUC(T c) is outside the normal interval [τmin(h), τmax(h)],

it is confirmed, that there is an organized data falsification

attack.

RUC(T c) :

{

∈ [τmin(h), τmax(h)] No Attack;
6∈ [τmin(h), τmax(h)], Attack Inferred;

(9)

An illustration of the 2016 testing set with a camouflage at-

tack, using a data order aware attack strategy with ρmal = 40%
and δavg = 120W in Figs. 9(a) and 9(b). The blue lines (with

markers) show the proposed metrics in the testing set under

no attacks, and the dotted lines represent the safe margins.

Observe the red lines representing metrics under attacks. The

ratio signature is not evident, which demonstrates the need for

the second tier.
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VI. THEORETICAL EXPLANATION AND PROPOSED

METRIC PROPERTIES

In the previous section, we just proposed the defense

methodology, but did not understand why and how it detects

data falsification. In this section, we formalize the different

mathematical and security properties we discovered, that pro-

vides this understanding. This section first derives the generic

security lessons/properties and then the implications of power

consumption data falsification in AMI is concluded.

A. Why is the ratio metric a stable invariant?

We provide a mathematical explanation for the invariance

observed in ratio metric across multiple data sets over var-

ious years. Most residential households in an area tend to

have certain coarse grained shared behaviors during a typical

day although individual differences exist. Therefore, power

consumption of different households are not completely in-

dependent but intuitively should possess some weak positive

correlation. Since the Qr(T ) is a daily metric, the stability

of proposed metrics will get captured (if its proven to be

related to the correlation) although different datasets will have

different mean values of Qr(T ) samples. The difference in

datasets only affects the mean value of the proposed Qr(T )
but not its stability over time windows within that dataset (as

seen in Figs 6 & 7). Now, suppose we denote the average

difference between power consumption of any two houses

in the series p1, · · · , pN over a time window T (a day) as

ξ(T ) = Avg.
(

|pi+1 − pi|
)

. Since humans exhibit a shared

routine of habits through a typical day, the average difference

between any two meters averaged over T (equaling a day)

is unlikely to be arbitrarily different from each other. In other

words, the distribution of ξ(T ) will be weakly stationary. This
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Fig. 10. Irish Dataset: (a) Average Difference ξ(T ) (b) amin values

claim can be verified by Fig. 10(a) showing the time series of

ξ(T ) for the Irish dataset.

Now we establish an important link between the observed

invariance of ξ(T ) and Tung’s Theorem and its corollar-

ies [18], [16] (1975). Tung’s Theorem “proposed the theo-

retical upper and lower bounds on the absolute difference

between Arithmetic and Geometric Mean in any series data.”

An extension of this Theorem described ‘the upper and lower

bounds on the absolute difference between Harmonic and

Arithmetic Mean’ in a series data [16]. The theorem states:

Given a series a ≡ {1 ≡ a1, · · · , aN ≡ B}, where 1
and B denote the minimum and maximum values of the

series of N numbers. Let HN and AN denote the harmonic

and arithmetic means respectively. Then, the bounds on the

absolute difference between HN and AN is given by:

(B − 1)2

N(B + 1)
≤ |AN −HN | ≤ (

√

(B)−
√

(1))2 (10)

If minimum and maximum values are amin and amax

respectively, then Eqn. 10 can be rewritten as:

(amax − amin)
2

N(amax + amin)
≤ |AN −HN | ≤ (

√

(amax)−
√

(amin))
2

(11)

where amax ∼ amin + (N − 1)ξ. This means that the bounds

of |AN − HN | is dependent on ξ and amin only. Since, it

is evident from Figs. 10(a) and 10(b), that ξ and amin are

both stable, therefore |AN − HN | should also exhibit high

stability. This explains the invariance of harmonic to arithmetic

mean ratios across multiple datasets and their subsets. We

believe that this result has broader implications and not just

restricted to smart metering infrastructure. Most cyber-physical

systems having sensory redundancy exhibit positive correlation

while sensing some physical phenomena, under appropriate

temporal and spatial granularities. When these spatio-temporal

granularity is appropriately designed, it will enable engineers

to use our metric as an invariant for anomaly detection. The

above explanation that is backed by results from real datasets

prove that our approach is an alternative to deal with the

common difficulty of handling shifting trends in various power

consumption datasets.

B. Establishing Effect of Pythagorean Mean Properties under

Data Falsification Attacks

The strictly Schur-Concavity property of Harmonic Means

compared to the non-strict concavity of Arithmetic means can

be exploited to derive unique security properties/lessons under

different data falsification modes that facilitate deeper under-

standing of changes in the proposed metrics under attacks.
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Let X = {x1, · · · , xN}, denote a data series from N
sources (such as number of meters) each indexed as i, such that

the mean and standard deviation of X = (µ, σ). The harmonic

mean HM(X) and arithmetic mean AM(X) is defined as:

HM(X) =
N

∑N

i=1

1

xi

AM(X) =

∑N

i=1
xi

N
(12)

Schur Concavity is described by the following criterion:

(x1j − x1k)

(

∂y

x1j

− ∂y

x1k

)

≤ 0 ∀x ∈ IRd
(13)

where x1j 6= x1k. It can be verified from Fig. 11 that the y-axis

represents the range of AM and HM functions for a simple

two member data series X = (x1, 2) where x1 ∈ {0,∞}
is the x-axis representing the domain of the AM and HM

functions. Note, that while AM is both concave and convex,

HM is strictly Schur Concave. Therefore, when a subset of

xi values in X is changed (visualize x1 getting biased from

original value say x1 = 1), AM growth/decay rates are linear

as well as symmetrical for additive and deductive biases. On

the other hand, due to the exclusive Schur-Concavity property

growth or decay rates in HM are asymmetric to the rate of

change in AM. Therefore, this asymmetry causes a change in

the ratio value of the observed HM and AM.

Additionally, we found that the increase or decrease in the

ratio value is also dependent on the position of the datapoint

(lesser or greater) being attacked w.r.t the actual mean, the

margin of false data and the mode of data falsification.

Table I, summarizes the various lessons/properties we derived

for various attack types, and margins of false data, in terms of

the effects of various attacks on the proposed ratio metric, for

attacked datapoints on left (L) (lesser) or right (R) (greater) of

the actual mean. These properties are generic and not specific

to the dataset, but their implications on the power consumption

dataset are explained separately later.

Now, we give a short explanation of Table I: Suppose,

sub portions of a data set generated from multiple sources

experience additive and deductive manipulation by an attack

bias ǫ. The rates of growth in HM and AM that occur

under additive attacks (denoted by ‘+’) is represented by

|∆HM+| and |∆AM+|. Similarly, rates of decay in HM

and AM occurring under deductive (denoted as ‘-’) and

camouflage attacks (denoted as ‘+,-’) are represented by

|∆HM+|, |∆HM+,−|, and |∆AM+|, |∆AM+,−|. The L#
denotes the observation/lesson/property number, Mode repre-

sents type of falsification, Position ‘L’ and ‘R’ denotes whether
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TABLE I
EFFECT OF DIFFERENT ATTACKS ON PYTHAGOREAN MEANS GROWTH DECAY RATES

Lesson # Mode Position Property Ratio Effect Necessary Sufficient

L1 Additive(+) L |∆HM+| > |∆AM+| Increases ǫ < k+(llow) ǫ < k+(lhigh)
L2 Additive(+) L |∆HM+| < |∆AM+| Decreases ǫ > k+(llow) ǫ > k+(lhigh)
L3 Deductive(-) L |∆HM−| > |∆AM−| Decreases ǫ > 0 ǫ > k−(lhigh)
L4 Deductive(-) R |∆HM−| < |∆AM−| Increases ǫ < k−(rlow) ǫ < k−(rhigh)
L5 Deductive(-) R |∆HM−| > |∆AM−| Decreases ǫ > k−(rlow) ǫ > k−(rhigh)
L6 Additive(+) R |∆HM+| < |∆AM+| Decreases ǫ > 0 ǫ > k+(rhigh)
L7 Camouflage(+,-) X |∆HM+,−| > |∆AM+,−| Decreases X X

the position of the attacked datapoint is on the left and right

of the true mean. The necessary and sufficient conditions

for experiencing each observation is also provided in the

rightmost columns. ‘X’ denotes ‘do not care’ conditions. The

statement of every property and lessons are provided in detail

in Appendix D. We also provide a theoretical illustration of

how Schur concavity creates these unique properties under

various falsification attacks in Appendix D.

To conclude, the unique properties of Pythagorean Mean’s

growth decay rates is the first reason to use Harmonic to

Arithmetic Mean ratios for attack detection. The second reason

to use HM to AM ratio is its high stability under no attacks

as established in Figs. 6(a), 6(b) and 7(a). Third, the closed

forms of Harmonic Means do not exist and only coarse approx-

imations are possible. The approximation errors increase with

increasing number of data points and number of attacked data

points, and the entire underlying time series is not very stable.

Thus, it makes it difficult if not impossible for an adversary

to exactly back calculate a strategy to beat our method with

100% success rate.

Necessary and Sufficient Conditions for Ratio Change:

Below, we write the ‘approximation expressions’ for various

necessary and sufficient conditions listed in Table I. We verify

the accuracy of these approximation experimentally in the

results section. Theoretical verification and approximation of

bounds are provided in Appendix D and E respectively.

The approximate (average case) lower bounds are:

k−(rlow) = k+(llow) =

klow =
σ

M
+

σ√
M

√

N −M

N − 1
+ σ (14)

where + and − superscripts denote additive and deductive

manipulation and l and r denote whether the bias points are

on the left or right of the actual mean.

The approximate upper bounds are: k+(lhigh) =
k−(rhigh) =

khigh = max(σ2
,
2σ

M
+

σ√
M

√

N −M

N − 1
+ 2σ) (15)

The average conditions for deductive on the left and additive

on the right side of the mean is:

k
−(lhigh) = k

+(rhigh) = σ

√

N

N − 1
(16)

In the worst case klow > {(|xi−µ|+σ
√

N
N−1 )+µ)}−xi,

and k(high) > |xi −µ|+ σ2. The worst case expressions can

be used for verification purposes, when the smallest datapoint

in the series is additive attacked, while the highest datapoint

is deductive attacked. The approximation of the above bounds

are provided in Appendix E.

Implications of Lessons on Real Consumption Dataset:

Note that Table I lists ‘general’ attack signature properties

of the ratio metric. When applied to real power consumption

datasets and attacks, these lessons have to be surmised in the

relevant context. Recall, that power consumption data set has

64% of the data points on the left side (<) of the mean and

36% are on the right (>) of the mean. Hence, on average,

the probability of attacked datapoints will be more on the

left of the true mean. From Table I, we know that attacked

data-point’s authentic position relative to the true mean, affects

growth and decay rates of HM and AM. Therefore, we predict

that experimental results will confirm to L1, L3, L4, L7 given

the focus of the paper is on lower margins of false data and

most of the authentic data is on the left of the true mean.

To conclude, HM to AM ratio should increase under additive

attacks, and decrease under deductive and camouflage attacks,

if the attacker does not know the defense mechanism and the

margins of false data are lower than the standard deviation. For

higher margins of false data, a decrease in proposed metrics

is predicted for all modes of attack due to L2, L5, L6.

C. Parameters for Unbiased Security Performance Evaluation

Here, we define four metrics required for fair and unbiased

security performance evaluation and analysis of our proposed

anomaly detection technique. The following also explains why

we do not use to the traditional ROC curves for evaluation.

Time to Detection: is the difference (in days) between the start

of attack and the time it was detected. This metric is applicable

for non-persistent and non-optimal attacks against our detector.

Expected Time between False Alarms E(Tfa): For evaluating

security of proposed approach against persistent attacks, the

standard ROC curves for security evaluation are a biased

measure for three reasons: (i) False alarm rates are misleading

since it depends on the time duration of study; (ii) Low

false alarms rates in ROC curves can be misleading due

to base rate fallacy elucidated by Axelsson et. al. in his

seminal paper [1] and is not ideal for intrusion detection but

component diagnostics; (iii) It is particularly difficult to get

detection rate with ROC under persistent/undetected attacks,

since the adversary never gets detected. To prevent such a bias,

a recent work [23] showed that expected time between false

alarms versus the impact of an undetected attack averaged over

varying thresholds (κ in our case) is a more unbiased measure

for performance evaluation for intrusion detection mechanisms

under persistent attacks. If the impact of undetected attack
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does not arbitrarily increase for higher E(Tfa), then it is

a good detection metric. Hence, we used this approach for

security evaluation of our method rather than the standard ROC

curves. However, our definition of E(Tfa) =
∑ηFA

1
TBFA

ηFA
is

more unbiased than the one suggested in [23] which calculated

E(Tfa) as an average of false alarms over the total time.

Impact (of undetected attack) per Unit Time (I): The I =
RR/24 revenue damage per hour used as a measure to

quantify impact of undetected attack, where RR is attack

revenue per day as defined earlier in Sec. III (Eqn. 1). We

plot E(Tfa) versus I for security evaluation of our method.

Break Even Time (TBE): Assuming a fixed average cost of

$500 to compromise a meter (from reports in a real attack [29],

[32]), let the total investment of attack is TC = 500 ∗M in

dollars. Then, TBE = TC
RR∗365 is the time (in number of years)

for total revenue accrued to breakeven TC invested, where

RR is the revenue accrued per day for the undetected attack.

Given a particular microgrid N , we vary M to show how our

methods prolongs TBE under persistent attacks.

VII. EXPERIMENTAL EVALUATION

A real dataset for the past 3 years (2014, 2015, 2016)

was gathered from Pecan Street Project [34] for 200 and

800 houses. We used the 2014 and 2015 datasets for system

identification, while 2016 data set was used as a testing set

for evaluation. A validation data set [36] of 5000 houses

from Ireland for 2 years (2009, 2010) was also used to prove

generality, scalability, and sensitivity. We fed the real data into

a virtual AMI, and generated various attack samples over data

from the testing set. The experimental section is organized into

(A) Attack Forensic Trends (B) Performance Evaluation (C)

Comparison with existing works.

Subsection (A), shows the forensic signatures for each at-

tack strategy, modes, and stealth levels in terms of δavg, using

a fixed threshold κ = 2sr (that gives a desired baseline false

alarm rate as shown later), and a fixed fraction of compromised

nodes (40%), to prove that the properties predicted earlier

match with the results. We consider the frame length of

FS = 7 days over which the standard limit of RUC(T ) is

calculated considering a corresponding κ = 2sr. We develop

an attack reconstruction scheme that remaps the observed

forensic signature to conclude presence and mode of attack.

Subsection (B), shows our performance by parameterizing

all ρmal, δavg , κ, and N , values to report the detection limits.

We provide the bounds of (δavg, ρmal) pairs where our scheme

fails to detect, and quantify how our approach limits the

impact of persistent attacks. We tested over multiple attack

start points and randomized identities of compromised meters

while reporting performance to avoid sampling biases.

Subsection (C), compares our work with some existing

works under a comparable threat model with the same datasets.

A. Attack Forensics and Signatures

While we emphasize on results with δavg < 400W , our

method also works for δavg > 400 as well. Within δavg < 400,

the comparatively higher (ρmal, δavg) pairs produce a clear

signature in the first tier itself. We term this class as Low

Attack Strength. If either δavg and/or ρmal are lowered further,

clear attack signatures are not obtained in the first tier, but the

second tier reveals the attack. We term this attack class as

Ultra Low Attack Strength. For all strategies with δavg ≥ 400,

we term them as High Attack Strength.

1) False Alarm Baseline: Fig. 12(b), shows the number of

false alarms per year for various values of κ for our testing set

of 800 houses (2016 data) under no attacks. It shows just one

false alarm, while using a standard limit corresponding to κ =
2sr. For such an ultra-low false alarm rate (0.27%), this κ is

known as a baseline threshold where detection sensitivity is the

worst. To represent the worst detection case, the attack forensic

subsection results uses the baseline κ = 2sr. The performance

evaluation subsection shows how detection is improved further

by decreasing κ from the baseline value if more false alarms

are tolerable by an utility.
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Fig. 12. False Alarm Performance(a) All κ (b) N = 800 with κ = 2sr
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Fig. 13. Ultra Low Deductive (a) Ratio (b) RUC

2) Ultra Low Attack Strength: Figs. 13(a) and 13(b) ex-

hibit the signatures of the ratio and RUC metric, under a

deductive and data order aware attack with ρmal = 40%, and

margins as low as δavg = 50W . The attack starts from the 41st

day which is depicted by a bold black dotted line. As predicted,

Fig. 13(a) shows a gradual decrease in the ratio, compared to

the original testing set’s ratio from the attack start point. But

owing to the low δavg , the deviation in the ratio signature

is not enough to confirm the attack as it closely follows the

expected ratio trend. However, the corresponding RUC plot in

Fig. 13(b) for the same scenario, reveals the confirmation of

presence of an attack within 10 days from the start. Lack of

clear signature in the first tier ratio confirms an attack of ultra

low strength. In Fig. 13(b), the RUC(T c) on the 50-th day

goes below the lower standard limit and is of negative sign,

which rules out the options such as additive and one sided

deductive and camouflage. Checking the directional change in

the moving average of HM and AM from the 42nd day will

show a gradual decrease in both the means. This confirms a

ultra low strength deductive attack. We can see that even a

margin of false data as low as 50W gets detected.

Figs. 14(a) and 14(b), exhibit the corresponding signatures

for an additive attack with ρmal = 40% and δavg = 80 with a

data order aware strategy. The ratio signature follows lesson
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Fig. 14. Ultra Low Additive (a) Ratio (b) RUC

(L1) and slightly increases, on account of being additive and

the δavg being much lower than klow = 458 (calculated by

Eqn. 14) for this attack strength pair. But due to ultra low

attack strength, the first tier is not enough to confirm an attack

as seen in Fig. 14(a). However, Fig. 14(b), shows that second

tier is able to detect the attack within 6 days.

The corresponding results for camouflage attacks had al-

ready been shown earlier in Figs. 9(a) and 9(b). Note that the

signature for camouflage were more bursty due to the additive

and deductive bias components. Note that the detection took

about 5 days, which is earlier than additive owing to the higher

δavg of 125W . This is to show that time to confirmation of

attack is dependent upon the δavg value as well.

3) Low Attack Strength: Fig. 15(a), shows signatures under

additive attacks with ρmal = 40% and δavg = 200. The

δavg is less than most existing works, but the ratio metric

shows a clear indication of an attack. Figs. 15(b), shows the

scenario for deductive and camouflage attack for the same

ρmal, δavg for a duration 42nd to 65th day. To show an

additional perspective, the non data order aware result is also

shown in Fig. 15(b), that proves the relative ease of detection

for non-data order aware attacks.
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Fig. 16. Incremental Evolving Attack: (a) Additive (b) Camouflage

4) Incremental Evolving Attacks: Figs. 16(a) and 16(b),

show the tier one signature with incremental evolving attacks

with 2 watts increment on every time slot upto δavg = 200W .

If we used a residual check at every time step, this strategy

would not be captured easily due to readjusting.

5) Validation with Irish Data Set: To show that our sig-

natures reported are consistent across other data sets, we

demonstrate the deductive and additive attack signatures for

the Irish Dataset. The irish dataset did not have two full

year’s data. Hence, we used safe margins widths from Texas

dataset onto the ratio metric of irish dataset (since variance

in ratio samples were similar). Figs. 17(a) and 17(b), show

unique signatures for the Irish data set for deductive attacks

(ρmal = 10%, δavg = 70W ) and Figs. 18(a) and 18(b) show

the same for additive attacks (ρmal = 20%, δavg = 100W ),

that are consistent with the observations from the Texas data

set. This shows that the proposed metrics and inferred baseline

thresholds obtained from Texas Data for the RUC generalizes

well for the Irish Data set. Higher ρmal in this dataset get

more easily detected hence lower ρmal is shown. From our

experience, the irish dataset showed more attack sensitivity.
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6) Validation with High Attack Strengths: Fig. 19, is an

exhibit which proves that our proposed model works for

higher attack strengths as well. In the following result the

ρmal = 40% and δavg = 800.
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TABLE II
CONCLUDING SECURITY STATE

Ratio Limit Sign HM,AM Conclusion

Up Outside Positive Up, Up Additive, S

Down Outside Negative Up, Up Additive, N

Down Outside Negative Down, Down Deductive, X

Down Outside Negative Down, Same Camouflage, X

X Inside X X, X No Attack, X

7) Attack Scene Reconstruction: Observing features from

the signatures help us conclude the mode of falsification, type

of strategy employed, estimated start time of attack, time of

stoppage of attack (if any). The features are: (i) Direction

(going up (increasing),down (decreasing) or same) of the ratio,

harmonic, and arithmetic mean (ii) Limits (outside or inside)

of the RUC bound. (iii) Sign of RUC (positive or negative). For

example, RUC(T ) is positive and outside the τmax(h), and
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the observed AM and HM has shown an increase, a stealthy

additive attack is confirmed. But if ratio and RUC(T ) is

negative but observed HM and AM increases, then it is an

additive attack with larger margins (δavg < klow). Intuitively,

the rest of the conclusions can be made. S,N,X in the Table II

denotes Stealthy, Non-Stealthy, and Don’t care.

B. Performance Limits and Security Evaluation

For different candidate thresholds of κ, we show how our

approach restricts the impact of optimal persistent attack for a

given AMI network. Second, we study detection limits for dif-

ferent combinations of (ρmal, δavg) at (known as breakdown

point) for a given AMI network that just escapes detection. We

show the adversary’s breakeven time TBE at these breakdown

points is very high. Finally, we show detection sensitivity to

different δavg with changing microgrid sizes for a given attack

budget M and a desired false alarm rate.

Limiting Impact of Persistent Attacks: Figs. 20(a) and 20(b),

depict the limiting impact of undetected attacks if the attacker

knew the threshold and detection method and remained unde-

tected with an attack that just escapes detection. The Y-axis,

denotes the impact per unit hour (I) by the adversary, while

the X-axis denotes the expected time between false alarms.

The largest point in X-axis correspond to the E(Tfa) values

obtained for thresholds (’standard limit’) corresponding to the

baseline safe margin κ = 2sr. As we reduce κ from this

baseline, the expected time between two false alarms decreases

due to increasing false alarms. To show this, we decrease the κ
with a step-size of 0.02 and get a unique value of E(Tfa) and

I for every possible κ value for both additive and deductive

attacks. Figs. 20(a) and 20(b) (for deductive and additive

attacks), clearly show that as the average time between two

false alarms increases, the impact of undetected attack does not

increase significantly. At E(Tfa) = 134, the impact is limited

to $0.58 for deductive attacks, and $0.62 dollars for additive

attacks, even when 40% of the meters had been compromised.

Similarly different lines in Figs. 20(a) and 20(b) correspond

to E(Tfa) vs I various ρmal.
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Fig. 20. Limiting Impact of Persistent Attacks: (a) Deductive (b) Additive

Breakdown Points and Breakeven Time: For every value of

ρmal, there is a corresponding δavg value on (or below) which

our detection method starts to fail. We call this (ρmal, δavg)

pair as a breakdown point. Given a particular ρmal, and full

knowledge of the defense mechanism, the attacker can use

this corresponding δavg to cause maximum damage while

remaining undetected. The impact of such a strategy is studied

to quantify the time extent to which our method forces the

adversary to breakeven its total cost.

From Table III(a) (left table), we observe that breakdowns

occur at a comparatively larger δavg for smaller ρmal and vice-

versa. However, owing to small ρmal, the impact (RR per day)

is also the least. The attacker can increase the ρmal (say 70%)

and increase its daily revenue. However, at $500 as investment

per meter (from [29], [32]), it will take 6.79 years to recover

the money invested, because our method catches any δavg as

low as 70W or above on average. A high TBE depicts a level

of discouragement for adversary to continue an undetected

attack that takes 6 years to breakeven since it is forced to

attack at very small δavg values to ensure evasion. Table III(a),

provides a comprehensive list of the breakdown points and

their TBE for deductive attacks. Similarly, the detection limits

for additive attacks is shown in Table III(b). Note that all

these values are for thresholds that yielded one false alarm

in a year. A slight increase in tolerable false alarm rate will

further reduce the undetectable strategy space. Note that the

largest δavg in the tables (120W ) for any ρmal is about four

times less than breakdown points in existing works [2], [8]

which fail to provide any detection when δavg < 400 using

the same datasets.

TABLE III
BREAKDOWN POINTS

ρmal δavg RR TBE

10 120 6.9 3.9

20 95 10.9 5.0

30 80 14.6 5.5

40 65 14.9 7.3

50 60 17.2 7.9

60 70 24.1 6.7

70 70 28.2 6.7

ρmal δavg RR TBE

10 130 7.4 3.6

20 100 11.5 4.7

30 85 14.6 5.5

40 80 18.4 5.9

50 80 23.0 5.9

60 85 29.3 5.5

70 90 36.2 5.2

Scalability of N versus Sensitivity to δavg: Fig. 21, shows a

3D view of sensitivity to different margins of false data under

deductive attacks, (y-axis) for various deployments of micro-

grid sizes N (x-axis), if the adversary has a given M for the

Irish dataset. The κ threshold required for getting one false

alarm per year changes for various values of N as shown

on the z-axis. The results show that the worst case where

only 100 out 4000 meters (ρmal = 2.5%) are compromised,

the detection sensitivity limit is at δavg = 150W . At the

other extreme, when 300 out 400 meters (ρmal = 75%) are

compromised, we detect the attack at 50W . Both 150W and

50W are much lower than 400W which the existing works

assume. Hence, it is a good decentralized solution for intrusion

detection since microgrid sizes usually range from 100-2000.
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Discussion on some Special Cases: For additive attacks, we

know that the ratio metric increases for lower attack strengths

but decreases for higher attack strengths mainly due to right

skewness of the AMI data. Naturally, an intermediate range
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in δavg values exists where ratio will cease to increase and

the start to decrease for additive attacks. We term this as

a cross over point. The attacker may be tempted to target

this as a potential strategy too by launching a strategy where

δavg ∼ klow thinking that the ratio will stay same. However,

we show that it is only possible to delay detection but not

possible to avoid detection for all practical purposes. Plugging

in the scenario of ρmal = 40%, N = 200, σ(2016) = 417
in the Eqn 14, we calculate the necessary condition bound

klow = 458W. We attacked with δavg = 450 and δavg = 490
with several randomized combinations of ρmal and plotted

the worst case among all experimental rounds in Figs. 22(a)

and 22(b). Fig. 22(b), shows that attack is detected within 45

days and 12 days after attack launch respectively. The average

time to detection for these δavg over all experimental rounds

was ‘much lower’ at 21 days. We conclude that for additive

attacks it might be possible to delay but not escape detection

by back calculating klow and khigh, due the highly irregular

safe margin, non-existence Harmonic mean’s closed form.
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C. Comparison with Existing Approaches:

Now we compare our work with variations of EWMA and

CUSUM techniques as discussed in the Section II.

Comparison with EWMA: The EMWA fails regardless the

choice of weights and variation in thresholds of the safe

margin. The average performance of an EWMA based metric

is typically performed through ROC curves. The ROC for

EWMA based approach under the given threat model is shown

in Fig. 23(a). It clearly shows that as false alarm rates increase

to up-to 25%-30%, the detection rate does not increase above

50%, for most stealthier (ρmal, δavg) pairs. For instance, an

attack of ρmal = 50% and δavg = 200 is not detected by

EWMA at a threshold which ‘gives an expected time between

two false alarms of 13 days’. We detect this attack with a

threshold (safe margin) that gives an expected time between

two false alarms of 134 days.

Comparison with CUSUM: The Sh and Sl correspond to

two CUSUM metrics that monitor increasing and decreasing

trends in a process variable. We concluded that this not

applicable under stealthy attacks for a process such as electric

power consumption owing to its large variations. Therefore,

the safe margin ends up being really wide due to the large

variance in the CUSUM samples caused by drifts in mean

consumption trends. Also this trends are inconsistent across

years which rules a historical safe margin based approach.

Therefore, CUSUM misses stealthier attacks altogether (as

seen in Fig. 23(b)), although the false alarm is not poor.

More insights and supporting results are provided in the

Supplementary Results. The ROC curves of CUSUM will be

absurd therefore and hence not included.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we showed that various falsification modes

such as deductive, camouflage and additive attacks launched

by organized or persistent adversaries with stealthy strategies

and ultra low attack strengths can be detected (or impacts

limited) in real time in a light weight and non privacy

intrusive manner, while having ultra-low false alarms. We

show that even if the attacker knows the mechanism and

the thresholds and stays undetected, the method inherently

forces the adversary to attack with strategies that limit the

impact of undetected attacks, making such strategies less

attractive to the adversary. In future, we will study on-off and

data omission attacks which will require a little modification

of the tier 2 detection level. We will propose a method

for identifying the meters that are injecting false power

consumption data that will be guided by the knowledge

gained from this paper, such as mode of attack, stealth level,

strategy used. Since the security properties are generic, the

broader impact of the methodology and security properties

for data falsification will be laid out.
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Appendix for:

Detection and Forensics against Stealthy Data

Falsification in Smart Metering Infrastructure
Shameek Bhattacharjee and Sajal Das

I. APPENDIX A: DATA DISTRIBUTION CHARACTERISTICS

Fig. 1(a), shows the sample mixture distributions on a

transformed ln scale for different months. Note that the

shape parameter remains similar but the location and scale

parameters of pmix keep changing. The extent of normality

of the whole transformed power consumption data on the ln
scale is shown in Fig. 1(b).
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Fig. 1. Texas Data (a) pmix for different months (b) The Q-Q Plot

II. APPENDIX B: IMPACT OF LOWER MARGINS OF FALSE

DATA

Consider AMI micro-grid of N = 200 smart meters,

M = 80 implying ρmal = 0.4 or 40%. This scenario

is totally realistic for a powerful and organized adversary

deploying a decentralized detector. The actual aggregate power

consumption distribution has a mean and a standard deviation

of µA = 1200 units and σA = 400 units, respectively. We

studied from the real data sets that the average difference

between the EWMA and the instantaneous mean is about

115W . The average upper and lower bounds are 130 and

100. If the amount of additive error to be introduced in

the final mean is say Λ = 130 units, the δavg for each

malicious node is given by δavg = Λ∗N
M = 325W . This is an

illustration that attacks with lower δavg will be rarely detected

if measures of EWMA and ARMA of the mean consumption

is used. However, their impact at the same time is quite large.

Additionally, CUSUM of the mean does not work due high

error residual due to the unstable mean power consumption.

III. APPENDIX C: UNIFORM VS NORMALLY DISTRIBUTED

FALSE DATA

Figs. 2(a) and 2(b) show the difference between a normally

distributed δavg versus a uniformly distributed δavg. Note that

the change in the shape of the distribution is obvious in the

first case, while for the uniformly distributed false data, there

is no obvious change in the shape of the distribution. Hence,

the second one might be a more stealthier choice for attack

implementation.
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Fig. 2. Attack Distributions (a) Obvious Attack (b) Smarter Attack

IV. APPENDIX D: UNDERSTANDING SECURITY

PROPERTIES AND SIGNATURES

We have identified the following security properties in terms

of effects that various attack modes have over the Pythagorean

means and consequently, the proposed metrics:

When sub-portions of a data set generated from multiple

sources experience additive and deductive manipulation by a

bias ǫ respectively, the growth and decay rates of HM are

asymmetric when compared to the growth and decay of AM .

Owing to this, the ratio of the biased HM and AM must differ

compared to non-biased ones.

Property 1: Numbers on the left side of the true mean, when

changed with additive bias of ǫ, the HM growth rate is faster

than the corresponding AM growth rate, under the necessary

condition that ǫ < k+(llow), and the sufficient condition that

ǫ < k+lhigh.

Lesson 1: Owing to property 1, the ratio of the biased HM

and AM increases than the ratio of original data, (i.e., Q+(l) >
Q), if the ǫ < k+(llow) holds.

Property 2: Numbers on the left side of the true mean,

when changed with additive bias of ǫ, the HM growth rate

is slower than the corresponding AM growth rate, under the

necessary condition that ǫ > k+llow and sufficient condition

ǫ > k+(lhigh).
Lesson 2: Owing to property 2, the ratio of the biased HM

and AM decreases than the ratio of the original data, (i.e.

Q+(l) < Q), if the ǫ > k+(lhigh), holds.

Property 3: Numbers on the left side of the true mean, when

changed with deductive bias ǫ, the HM decay rate is faster than

the corresponding AM decay rate, for the necessary condition

ǫ > 0, and sufficient condition of ǫ > k−(lhigh).
Lesson 3: Owing to property 3, the ratio of the biased HM

and AM denoted by Q−(l) is lesser than the original datum

ratio Q for the sufficient condition that ǫ > k−(lhigh).
Property 4: Numbers on the right side of the true mean,

when changed with deductive bias ǫ, the AM decay rate

is faster than the corresponding HM decay rate rate, under



the necessary condition that ǫ < k−(rlow) and sufficient

condition ǫ < k−(rhigh).
Lesson 4: Owing to property 4, the ratio of the biased HM

and AM denoted by Q−(r) is greater than the original ratio

Q, provided the ǫ < k−(rlow) holds.

Property 5: Numbers on the right side of the true mean,

when changed with deductive bias ǫ, the HM decay rate is

faster than the corresponding AM decay rate, under the nec-

essary condition that ǫ > k−(rlow) and sufficient condition

ǫ > k−(rhigh).
Lesson 5: Owing to Property 5, the biased ratio Q−(r) is

lesser than the original datum ratio Q, if the corresponding

conditions hold.

Property 6: Numbers on the right side of the true mean,

when changed with additive bias ǫ, the HM growth rate is

slower than the corresponding AM growth rate, for necessary

condition that ǫ > 0 and sufficient condition is ǫ > k+(rhigh).
Lesson 6: Owing to property 6, the ratio of the biased HM

and AM denoted by Q+(r) is lesser than the original datum

ratio Q under the sufficient condition of ǫ > k+(rhigh) =

σ
√

N
N−1

.

Property 7: The corresponding rates of growth and decay in

the HM triggered by the additive and deductive biases of the

same bias margin ǫ are unequal. The HM decays at a greater

rate than it grows for the same ǫ. In contrast, the AM shows

equal growth and decay rates for additive and deductive biases

with same ǫ.
Lesson 7: Owing to property 7, the ratio of the biased HM

and AM denoted by Q+,−(l) is lesser than the original datum

ratio Q, since HM is effectively reduced, given the original

data point being biased are on the same side of the true

mean. This property helps in detecting camouflage attacks as

explained later.

Illustration of Properties: Let us illustrate the properties

using two numbers X = (x1, x2). Let the standard deviation

of X be σ. In Fig. 3, the x axis represents a variable say

x1. Let us fix another variable x2 = 2, such that the actual

ordered data set is X = (x1, 2). The y-axis represents the

value of AM(x1, x2) or HM(x1, x2).
Hence, the AM function of (x1j , 2)∀j = {0,∞} is repre-

sented by the solid blue line showing linear growth with x1,

and is neither strictly concave or convex. On the other HM

function of (x1j , 2)∀j = {0,∞} is represented by a dashed

red line is a strictly Schur Concave Function.

For original data set X , the AM = 1.5 and HM = 1.33
represented by points A and H in Fig. 3. Hence, their ratio

Q = HM
AM = 0.88. Now let us change one data point x1,

(which qualifies as a subset), with addition of a small amount

of bias ǫ = 0.3, mimicing an additive attack on numbers on

the left side of the true mean.

Let us now compare the resultant growth rates of HM and

AM in the biased data X+ = (1+0.3, 2). The biased HM and

AM are represented by points h+ = 1.57 and a+ = 1.65. The

additive growth of HM is denoted by ∆HM+ = h+ −H =
0.23. The growth of AM is denoted by ∆AM+ = a+ −A =
0.15. Thus, ∆HM+ > ∆AM+. Therefore growth rates of

HM and AM are asymmetric and the numbers on the left of

the mean with additive bias induces a faster rate of HM growth
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Fig. 3. Pythagorean Asymptotes

than the corresponding AM growth. This illustrates Property

1 and Property 2.

Furthermore, using Eqns. 14 and 15 (approximate average

case bounds in the manuscript), we calculate k+(llow) = 2.12
and k+(lhigh) = 3.535. Note that, ǫ = 0.3 < k+(llow), the

biased ratio of HM and AM Q+ = 0.95 increases compared

to the original Q = 0.888. Hence Lesson 1 is proven. If we

consider an ǫ = 3.359 > k+(lhigh). In such a case, X+ =
(1 + 3.359, 2), and Q+ = 0.86282147031 < 0.888. Hence,

Lesson 2 is proven.

Similarly, suppose x1 is biased with deduction of the same

bias ǫ = 0.3, such that X− = (0.7, 2). Points a− = 1.35 and

h− = 1.037 correspond to the biased arithmetic and harmonic

means respectively. Thus decay in HM and AM are given by

∆HM− = h− − H = −0.303 and ∆AM− = a− − A =
−0.15. Ignoring the signs which denote decay, a comparison

of corresponding rates of decay for the HM for additive and

deductive attacks proves |∆HM−| > |∆AM−|. This proves

property 3. Note that the biased ratio of HM and AM is Q− =
0.76 < Q. This proves Lesson 3, where ratio drops if points

already on the left of the true mean when reduced by a bias.

Additionally, when we compare rates of HM bias of deductive

with additive attack for the same ǫ = 0.3, it can be verified

that:

|∆HM−| > |∆HM+|

. However, |∆AM+| = |∆AM−|. Hence, HM decays at a

faster rate than it grows for the same bias, while AM growth

decay rates are same. This proves property 7 and Lesson

7. This is an intuition behind camouflage attacks detection

signature of camouflage attacks discussed later.

Now let us see all the cases where, the number of the right

side of the mean i.e. x2 is changed with additive and deductive

bias of ǫ = 0.3. Now X+ = (1, 2 + 0.3). The HM+ =
1.39 and AM+ = 1.65. The ∆HM = 0.05 and ∆AM =
0.15. Hence, HM mean grows at a slower rate than AM when

numbers on right side are changed with additive bias. Hence, it

proves property 6. Owing to the slower growth of HM, Q+ <
Q, which proves Lesson 6.

Finally, x2 is changed with a deductive bias of ǫ = 0.3,

making X−(r) = (1, 2 − 0.3). Hence, the HM− = 1.259
and AM− = 1.35. The ∆HM = 0.08 and ∆AM = 0.15.

This illustrates that AM decays at a faster than HM when

numbers on right side are changed with deductive bias given

ǫ < k−(llow) = 1. Hence, property 4 is proven. As a

consequence, Q− > Q, owing to the slower growth of HM.

This proves Lesson 4. To show lesson 5, x2 needs to be



changed with a deductive bias of ǫ > k−(rlow), but this is

not a feasible strategy since 2− k−(rlow) is negative.

V. APPENDIX E: APPROXIMATION OF THE BOUNDS

Let us assume that actual data series from n sources is given

as: X(n) = {x1, · · · , xn}. For ease of analysis, let us assume

that one data point say xn is compromised, with a false data of

δn added to it. Relative to the mean, the necessary condition

that creates a difference in the ratios, by triggering an increase

in variance will cause a drop in the ratio. Let the compromised

data series be denoted by: X ′(n) = {x1, · · · , (xn+δn)}. Now

the sample mean of the actual data series is:

x =
1

N

N
∑

i=1

xi (1)

The sample variance of the actual data series is:

σ2= 1

n−1

∑n
i=1

(xi − x)2 = 1

n−1

∑n
i=1

(

xi
2 − 2xxi + x2

)

= 1

n−1

[

∑n
i=1

xi
2 −Nx2

]

σ
2
=

1

n− 1

n
∑

i=1

(

xi

2 − x
2

)

(2)

For easing the analysis, let us assume the mean x = 0 such

that,

σ
2
=

1

n− 1

n
∑

i=1

xi

2
(3)

In contrast, assuming x = 0, the sample mean of the compro-

mised series is given by:

x′′ =

∑n−1

i=1
xi + (xn + δn)

N
=

δn
n

(4)

Therefore the sample variance of the compromised series using

Eqn.( 2) is σ2
′′ = 1

n

∑n
i=1

(

x
′′

i

2
− x′′

2

)

σ2
′′ = n−1

n σ2 + (1− 1

n )
δ2
n

N + 2xnδn
The ratio is drops if σ2

′′ > σ2. If we assume, xn is equal

to value of mean (= 0), the following inequality (necessary)

condition should be satisfied,

δn > σ

√

( n

n− 1

)

(5)

Note that, Eqn. 5 holds only assuming xn and x to be

equal to zero. For xn 6= 0 and x 6= 0, it means that

xn + δn > {|xn − x| + σ
√

( n
n−1

) + x} However, if data is

normally distributed, the real margin of false data is closer to

the necessary condition, because the difference between any

data point and x is not arbitrarily high. Hence, the average

case is given by,

δavg > σ + σ

√

( n

n− 1

)

Generalizing, let M be the number of data points compro-

mised without bias. Following the analysis in [4], it can be

shown that on the average, the necessary condition is:

δavg >
σ

M
+

σ
√
M

√

(n−M

n− 1

)

+ σ = klow

The above bound is necessary but may not sufficient to

effect a ratio drop additive attacks. But if δavg below klow then

the ratio cannot drop. This is infact established experimentally

in the paper. The ratio narrowly rises and drops around klow.

The sufficient condition is:

δavg > max{
2σ

M
+

σ
√
M

√

(n−M

n− 1

)

+ 2σ, σ2}

.

The theoretical sufficient condition is of little practical

significance given the context of our dataset. It is more relevant

for very small series data.

VI. APPENDIX F: DISTRIBUTION OF RATIO METRIC

SAMPLES ACROSS MULTIPLE DATASETS

Fig. 4(a) and Fig. 4(b), shows similarities between the

standard deviations in the ratio metric when compared to the

Irish dataset, although the mean values are different when

compared to the Irish dataset. This means that the safe margin

design works across datasets due to the high stability of the

ratio based metric.
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Fig. 4. Ratio Distribution (Texas Data): (a) 200 meters (b) 800 meters


