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Quantifying Trust for Robust Fusion While
Spectrum Sharing in Distributed DSA Networks

Shameek Bhattacharjee, Saptarshi Debroy, and Mainak Chatterjee

Abstract—In this paper, we quantify the trustworthiness of sec-
ondary nodes that share spectrum sensing reports in a distributed
dynamic spectrum access network. We propose a spatio-spectral
anomaly monitoring technique that effectively captures anomalies
in the spectrum sensing reports shared by individual cognitive
radio nodes. Based on this, we propose an optimistic trust model
for a system with a normal risk attitude and using approxima-
tion to the Beta distribution. For a more conservative and risk
averse system, we propose a multinomial Dirichlet distribution-
based conservative trust framework. Using a machine learning
approach, we classify malicious nodes with a high degree of cer-
tainty regardless of their aggressiveness of attacks or variations
introduced by the wireless environment. Subsequently, we pro-
pose two instantaneous fusion models: 1) optimistic trust-based
fusion and 2) conservative trust-based fusion, which exclude
untrustworthy sensing reports from participating nodes during
spectrum data fusion. Our work considers random, determin-
istic, and preferential (ON–OFF) attack models to demonstrate
the utility of our proposed model under varied attack scenar-
ios. Through extensive simulation experiments, we show that the
trust values help identify malicious nodes with a high degree of
certainty.

Index Terms—Dynamic spectrum access, trust and reputation,
Byzantine attacks, spectrum sensing data falsification, robust
fusion, secure environmental sensing capability.

I. INTRODUCTION

RADIO spectrum allocation is typically static in nature
where regulators like the Federal Communications

Commission (FCC) allocate spectrum for specific services
under restrictive licenses. However, recent studies have shown
that most parts of the spectrum are heavily under-utilized.
Dynamic spectrum access (DSA) networks allow such under-
utilized bands to be used opportunistically by secondary users
(i.e., non-licensees) as long as they do not cause harmful
interference to the primary users (i.e., licensees). In order to
detect the presence of primaries and avoid interference, the
secondary users equipped with cognitive radios (CRs) undergo
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continuous spectrum sensing. However, due to typical wireless
channel impairments like signal fading, multipath shadowing,
a stand-alone radio’s local sensing cannot conjecture the true
occupancy status of a channel. Hence the radios, also referred
to as secondary ‘nodes’ in this paper, participate in cooperative
spectrum sensing [10], [16], where an inference on the occu-
pancy status of a channel is made after fusing multiple local
sensing results (Environmental Sensing Capability (ESC) [6])
advertised by various nodes.

However, cooperative spectrum sensing can be vulnera-
ble when multiple malicious nodes share false local sens-
ing reports [5]. As a result, the fused decision may be
altered, hence jeopardizing the reliability of cooperative
spectrum sensing. Such phenomenon where local sensing
result is manipulated is known as Spectrum Sensing Data
Falsification (SSDF) or Byzantine attack [4], [13]. A mali-
cious node can advertise ‘occupied’ as ‘available’ inducing a
policy violation or advertise ‘available’ as ‘occupied’ causing
denial of spectrum usage. In adversarial, military, and het-
erogeneous cooperative sensing networks such actions are not
surprising where an adversary wants to cripple the operation
of others in the network using replicas that falsify [14]. Hence
there is a need to evaluate the trustworthiness of nodes before
considering their local spectrum sensing reports. A trust aware
selection of cooperative cognitive radios is necessary to filter
out spurious information (or rogue nodes) and preserve the
correctness of occupancy inference.

Most of the existing approaches provide defense
for centralized and infrastructure based DSA
networks [13], [24], [25], [27], but solutions for distributed
networks hardly exist. The common approaches are based on
voting and entropy divergence which fail if malicious nodes
collaborate and if there are too many of them. Some solutions
require location verification which is time consuming and
cannot be used in scenarios where location privacy is desired.
Some discuss trust metrics without proposing how evidence
for malicious behavior is gathered. Most works consider
a single channel system. Hence, there is a dire need to
provide a comprehensive trust framework for distributed DSA
networks that works for both multi-channel collaborative
and non-collaborative SSDF attacks with large number of
malicious adversaries without requiring exact location of
nodes.

In this paper we provide a framework for trust metrics for
a distributed DSA network under SSDF attacks to: a) improve
the integrity of cooperative spectrum sensing and sharing
(instantaneous short term) as well as b) identify malicious
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nodes (steady state long term). The proposed framework is
context-aware and able to model trust and reputation based
on the risk attitude of the network. To achieve this, first,
we propose an anomaly monitoring technique that gathers
trust evidences that could indicate the presence of anoma-
lies in the multi-channel spectrum sensing data shared by a
node’s neighbors. The anomaly monitoring technique takes
into account, the relative spatio-spectral orientation of the
nodes’ local neighborhood with respect to primary transmit-
ters, and does not depend on the location information or any
other trusted authority. Given such incomplete information
about nodes’ exact locations, we also demonstrate the effect
of pathloss environment on the certainty of the gathered trust
evidences.

Next, based on the trust evidences, we propose a Beta
expectation based trust model that assigns trust values to
neighboring nodes at different time slot. However, for a
network with a higher risk attitude like a mission critical
system, we also propose a Dirichlet distribution inspired trust
model, that is able to incorporate uncertainty in the trust val-
ues. Training set results showed that Dirichlet trust is not
linearly separable, and hence a linear threshold based robust
classification was not possible. To circumvent this disadvan-
tage, a Generalized Linear Model based kernel trick was
employed to map Dirichlet trust into a higher dimensional
plane, followed by an exponential scaling function, with trust
weights bounded between -1 and +1. We propose a machine
learning based classification for malicious node identification
using steady state trust values. For learning the threshold for
classification, we employ a supervised learning technique. For
a small training network, resultant trust weights are fed to a
Support Vector Machine (SVM) with known honest and mali-
cious labels that predict a linearly separable threshold. The
predicted threshold is used to classify malicious nodes for
testing sets with limited a-priori knowledge.

Based on the calculated values of trust at each time, we
propose an instantaneous trust based fusion that excludes the
report of an untrustworthy node from participating in the
cooperative spectrum fusion. Using varied and realistic simu-
lation environments, we study the behavior under two different
attack measures, viz. Probabilistic SSDF and Deterministic
SSDF and then analyze which is a better attack strategy
from malicious node’s perspective. Our results show that the
trust values of the malicious nodes are significantly lower
than those which are honest. Results also show that the trust
based fusion significantly outperforms the regular blind fusion
performance. We compare our results with existing works and
show improvement in performance, especially for high densi-
ties (≥ 50%) of collaborative and aggressive malicious nodes.
Finally, we consider a special case of ON-OFF attacks where
malicious nodes use temporal preferences while launching
SSDF attacks. Our results demonstrate that even for such spe-
cial and challenging (to detect) attack scenarios, our proposed
model successfully detects anomalous behavior and identifies
malicious nodes. The salient contributions of this work are
as follows:

• We provide a robust model for computing the trustwor-
thiness of nodes that participate in cooperative spectrum

sensing in a distributed DSA network under SSDF
attacks. The proposed model computes trust using a
received signal strength (RSS) based anomaly monitoring
technique.

• We propose two trust models applicable for systems with
different risk attitudes - an optimistic trust model that
approximates a Beta distribution, and a conservative trust
model using Dirichlet distribution.

• Our framework works for collaborative malicious nodes
with (ON-OFF) or without preferential attack models
under high densities of malicious nodes. Our model
does not need location verification thereby obviating the
possibility of location falsification.

• We propose ways to randomize attacks for a
multi-channel system and show which one is better
from a malicious node’s perspective.

• We show that our proposed trust based fusion works bet-
ter than blind fusion based prior works without the notion
of trustworthiness for collaborative and non-collaborative
multi-channel SSDF attacks.

The rest of the paper is organized as follows. Section II
discusses the related work, and the motivation. Section III
discusses the assumptions and the system model related to
CR network and the adversaries. Section IV proposes a tech-
nique to gather data as trust evidence for presence of anomalies
in advertised spectrum data. Section V proposes trust heuris-
tics/models for both optimistic and conservative systems with
varied risk attitudes. Sections VI and VII propose the mali-
cious node identification and trust based fusion schemes.
Section VIII discusses the simulation results for each trust
models. Conclusions are drawn in the last section.

II. RELATED WORK AND MOTIVATION

There have been a number of prior works in the defense of
SSDF attacks that either concentrate on malicious node isola-
tion or robust fusion ignoring reports from less trustworthy
nodes. Rawat et al. [24] propose a reputation aware mali-
cious node isolation scheme in a centralized network, where
local sensing reports are sent to a central entity (fusion cen-
ter) for global spectrum decisions. The authors argue that in
any practical scenario majority of the nodes cannot be mali-
cious. Hence, fusion center is bound to arrive at the correct
global inference given noise is a temporal phenomenon. So
global inference is matched with advertised occupancy from
each node. This is known as majority voting based defense
model. Other variants of this technique have been proposed in
works, such as [11] and [13].

However, the majority voting based defense model and its
variants assume that all nodes are inside or outside the pri-
mary’s coverage area; i.e., all nodes barring wireless channel
effects would arrive at the same local occupancy. It does not
consider practical scenarios, where two honest nodes might
legitimately have different local occupancy reports due to their
relative spatial positioning with respect to the primary trans-
mitter. In reality, all nodes may not legitimately sense the
primaries’ transmission just because few of them are placed in
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a location where primary signal decays below the normaliza-
tion threshold. In such a case, honest nodes may be penalized.
This can result in faulty global fusion and being unfair to
honest node.

Rawat et al. [25] propose a Kullback-Leibler (KL) diver-
gence based method for performance analysis under collabo-
rative SSDF attacks in a centralized DSA network. However,
the authors observe that above a certain fraction of malicious
nodes (50%), no reputation based fusion scheme can achieve
a performance gain. They acknowledge that when malicious
nodes collaboratively falsify on a particular channel and the
fraction of malicious nodes exceeds 50%, KL distance and
pairwise entropy techniques are not able discover malicious
nodes. Hence, the KL distance method is not robust enough
for high density of collaborative malicious nodes. As for SSDF
attack defense in distributed DSA networks, the body of work
meager. Moreover, existence of malicious nodes in a node’s
vicinity than honest nodes [4] may result in malicious nodes
easily outvoting the honest opinions on a channel, thus, deem-
ing such majority voting rules futile in case of distributed DSA
networks.

Furthermore, most of the existing works consider central-
ized networks where raw received signal strength (RSS) levels
are shared (soft decision) instead of binary vectors (hard deci-
sion). In [28], a consensus scheme is proposed where RSS
values are shared among neighbors in a distributed DSA
network. However, the authors compare the mean RSS with
individual reported RSS values to exclude outliers which
is the signal processing equivalent of the majority voting
based defense and thus suffers similar limitations as dis-
cussed before. The soft-decision model is often bulky and
hence recent literature has urged more importance towards the
hard-decision models.

Some works, such as [8] consider that the location of
the participating neighbor nodes are known and is used for
anomaly detection. However, such assumptions are not practi-
cal due to location privacy requirements. Overall, most existing
works with distributed DSA networks consider single channel
system and fail to take into account the temporal aspects and
nuances of SSDF attacks.

Our work in this paper, has been motivated by such limi-
tations. In our defense model, we consider SSDF attacks in
distributed DSA networks with nodes sharing multi-channel
binary occupancy reports. We also address the security issues
under different scenarios with varying densities of collabora-
tive or non-collaborative malicious nodes and with different
levels of aggression. Moreover, we successfully obviate the
need for location information sharing among nodes without
compromising the accuracy of anomaly and anomalous node
detection. Finally, our proposed defense model considers topo-
logical variations and asymmetric positioning of nodes with
respect to primaries’ coverage, such that malicious nodes are
identified with higher degrees of certainty. The optimistic and
conservative models could be applied based on the required
level of protection. For example, Radar Whitespaces reserved
for critical military and federal operations should be a more
conservative system than TV/GSM whitespaces used for civil-
ian use. Although this work is uses a distributed network

TABLE I
IMPORTANT NOTATIONS

it can be applied to decentralized or centralized network
as well.

III. SYSTEM AND THREAT MODELS

In this section, we discuss the system model, threat model,
and assumptions for the work.

A. System Model and Assumptions

We consider a distributed DSA network deployed over a
square region of a certain area, with N secondary nodes that
undergo spectrum sensing and determine whether a channel is
occupied by primaries. A secondary node i constructs its local
occupancy vector as: Bi

act = [b1, b2, . . . , bn], where bk is 1 or
0 depending on whether the channel k is decided as occupied
or unoccupied; and n is the total number of channels being
monitored. The occupancy decision is taken by comparing the
RSS measured on channel k with a common normalization
threshold γth such that RSS more than γth denotes channel
‘occupied’ (bk = 1) and vice-versa. Once the binary vector
is created, secondary node i broadcasts this information to its
neighboring node j within a sharing radius r. Similarly, i will
also listen to broadcast messages from its neighbors. Based on
the received vectors, a node employs our proposed fusion tech-
nique to obtain an estimate of spectrum usage at its location
that can significantly reduce the inherent errors of spectrum
sensing [13], [16]. A comprehensive list of important notations
is given in Table I. Below, we outline the other assumptions:

• We assume the secondary nodes to be static and need not
be aware of the geographical coordinates of other nodes.
This is useful as it addresses location privacy demands.

• We assume all nodes transmit through a common con-
trol channel while advertising its binary vectors [10] to
neighbors within a fixed radius r.

• We assume a primary network where each primary trans-
mitter whether it chooses to transmit or not, transmits
only on one channel, i.e., the channel associated with a
primary transmitter is known, e.g., TV whitespace.

• We assume that the location coordinates (xTk , yTk) of a
primary transmitter (Tk) transmitting on a channel (k) is
known to the secondary nodes.

• We assume that there is negligible channel noise between
two neighboring secondary nodes.
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B. Threat Model and Assumptions

For the threat model, we only consider dishonest secondary
nodes that are malicious in nature, i.e., nodes falsifying occu-
pancy vector opinions on few or most of the n channels. For
all practical purposes, we consider that malicious node would
avoid either extremes, such as, being too aggressive that might
result easy detection, or being too conservative that hardly
affects the network. For analysis, we only assume indepen-
dent attacks where attackers do not collaborate. However, in
simulation results we will also demonstrate that our method
works even if the malicious nodes are collaborative in their
attacks.

We represent the level of aggression of a malicious node
by magnitude of attack with values between 0 and 1 that is
measured as the fraction of total channels where opinion is
falsified. The magnitude of attack can be realized in two ways:

a. Deterministic Magnitude SSDF: A malicious node falsi-
fies the report on a fixed number of channels every time slot.
However, channels that are falsified are randomized every time
slot. The fraction of channels falsified on every time slot is
denoted by Iattack.

b. Probabilistic Magnitude SSDF: A malicious node falsi-
fies report on a random number of channels every time slot,
and channels falsified are also random. The nodes follow a
long term mean fraction of channels that are attacked. The
value of the mean is denoted as Pattack and it depends on how
aggressive the malicious node is.

We also consider a special ON-OFF attack model where
attack strategy is described with an ON:OFF ratio of attack
and non-attack periods. Ratios with very low ON:OFF ratio
signify the adversary being honest most of the time, which is
not realistic.

IV. ANOMALY MONITORING FOR TRUST EVIDENCE

To calculate trust of a node, we need to build evidence
which suggests whether a node is behaving in a cooperative
manner or not. This is decided by the presence or absence of
anomalies in the shared binary report. We find the presence of
anomalies in the advertised binary reports of a neighbor node
as evidence which forms the premise for trust computation.
We achieve this by predicting the bounds on RSS over a
channel for a particular neighbor node and then apply a
normalization criterion to obtain a predicted occupancy
vector. Each node calculates a predicted occupancy vector for
its neighbors. Then we compare predicted occupancy vector
with the occupancy vector that was advertised by a neighbor.
Any ‘mismatch’ or deviation between the predicted and
advertised vectors is recorded as an event of an anomalous
or non cooperative behavior. Similarly, the relative frequency
of ‘matches’ is a measure of how much trustworthy a node’s
report is. Under certain conditions, a match or a mismatch
decision may not be possible for a particular channel which
introduces uncertainty in the evidence.

A. Predicting Bounds on Power Vector

We assume that a node i measures the power vector Pi =
{γ i

1, γ
i
2, . . . , γ

i
n}, where γ i

k is the power received on channel k

and n is the total number of channels. Each node i forms its
binary vector Bi

act = [
bi

1, bi
2, . . . , bi

n

]
from its power vector Pi

by comparing γ i
k with occupancy threshold γth, where

bi
k

{= 1 when γ i
k ≥ γth

= 0 when γ i
k < γth

(1)

Each node i, advertises a public binary vector Bi
adv such that,

Bi
adv

{= Bi
act if node i ∈ H

�= Bi
act if node i ∈ M

(2)

where H and M denote the sets of honest and malicious nodes
respectively. Just as node i advertises its binary vector to its
neighbors, it also hears similar advertisements of binary occu-
pancy vector from its neighbors. For any neighboring node
j ∈ Ni, node i estimates the bounds on possible RSS on all
channels using their mutual distance, as shown in Fig. 1. The
mutual distance between the node i and its neighbor node j,
can be estimated using received signal strength (RSS) latera-
tion [2], [23]. We assume this distance between node i and its
neighbor j is denoted as sij. The estimated sij could be error
prone due to shadow fading and other channel impairments.

Assuming the standard propagation model for path loss
and shadow fading, we can find the distance of a transmit-
ter node given the antenna gains, transmit-receive side losses,
the path loss exponent, and the standard deviation of shadow
fading, when the transmitter power levels are same/known.
The assumption on equal (and hence known) transmit power
is reasonable as common control channel is used for broad-
cast messages to neighbors located within a common sharing
radius. Hence using the generic model for received signal as
discussed in [23] and implemented in [2]:

RXpwr = TXpower + � − (
PL1meter + 10log

(
dω
)+ fs

)
(3)

where, RXpwr is the observed (detected) received signal power
when a potential neighbor transmits with TXpower, � abstracts
all antenna gains, d is the distance between transmitter and
receiver which is unknown; fs is the shadow fading between
two secondary nodes; PL1meter is the near field reference
power, and ω is the path loss exponent. The deductive portion
of Eqn. (3) is given by the path loss such that:

PL1meter + 10log
(
dω
)+ fs = PLTx−Rx (4)

The shadow fading component on the dB scale is a normal
distribution with zero mean and standard deviation of shadow
fading such that fs = N (0, σs), where σs can be derived
through empirical studies. Given TXpower, �, RXpwr, PL1meter,
ω and σs for the concerned region, we calculate the estimated
distance d from Eqn. (3). This distance is the estimated dis-
tance between node i and its neighbor j and is denoted as sij

such that d = sij and is given by:

d = 10
TXpwr−RXpwr+�+fs−PL1meter

10ω = sij (5)

Calculated sij varies with the variation of fs which follow a
normal distribution with mean 0 dB and a non-zero standard
deviation of σs dB. The standard deviation of shadow fading
(in dB) can range from 3 to 7 dB in certain indoor environ-
ments [2], and as high as 8 to 12 dB in certain outdoor to
indoor environments [1]. The path loss exponent ω is also
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Fig. 1. Maximum and minimum RSS on channel k of node j.

heavily dependent on the type of physical environment and
is typically greater than 2 in environments where obstructions
are present. Typical value for an indoor office environment
may be 3.5, a dense commercial or industrial environment 3.7
to 4.0, and a dense home environment might be as high as
4.5. We have used these realistic values in our simulations for
validation.

The distance sij allows us to draw a circle of radius of sij

around the monitoring node i. This circle is the locus of the
neighboring node j’s location which can be anywhere on this
circle. We draw a straight line from the center of the circle
to the primary transmitter Tk located at (xTk , yTk) as shown
in Fig. 1. Under ideal conditions, the RSS due to Tk will be
maximum on the point of the circle that is closest to Tk (point
H and distance sjmin,k) and minimum at the point farthest from
Tk (point L and distance sjmax,k). We denote the RSS values
at these two locations as [γ j

k ]high and [γ j
k ]low respectively. For

all other locations within the circle, the RSS varies between
[γ j

k ]high and [γ j
k ]low.

Modeling the primary signal propagation considering fading
over long distances, we have

γ i
k = Pk × A2

sω
ik

+ fl; (6)

where γ i
k is the RSS detected on channel k at node i for a

primary transmitter Tk, A is the frequency constant, sik is the
distance between primary tower Tk and node i, and Pk is the
transmit power of Tk, A = λ

4π
where λ is wavelength of light,

fl is shadow fading factor over long distances between primary
towers and secondary nodes such that fl = N (0, σl). fs and fl
are different because the extent of shadow fading is different
between two secondary nodes and between a primary and sec-
ondary, and usually σs < σl. From Eqn. (6), we get Pk which
is used to calculate the bounds on possible received power due
to the primary’s transmission (see Fig. 1) as:

[
γ

j
k

]

high
= Pk × A2

sω
jmin,k

+ fl; (7)

[
γ

j
k

]

low
= Pk × A2

sω
jmax,k

+ fl; (8)

Now we divide the Eqn. (6) by Eqns. (7) and (8) to cal-
culate [γ j

k ]high and [γ j
k ]low, since sik, sjmin,k and γ i

k are

known to node i. Thus the predicted RSS of node j is
a 2-tuple vector Pij

predict = [
([γ j

1 ]low, [γ j
1 ]high), ([γ j

2 ]low,

[γ j
2 ]high), . . . , ([γ

j
n ]low, [γ j

n ]high)
]
.

B. Normalization and Trust Evidence Formation

With the estimated RSS known, the occupancy inferred by
node i about node j on channel k is derived as:

b j
k|infer =

⎧
⎪⎪⎨

⎪⎪⎩

0 if both
[
γ

j
k

]

low
and

[
γ

j
k

]

high
≤ γth;

1 if both
[
γ

j
k

]

low
and

[
γ

j
k

]

high
≥ γth;

X otherwise

(9)

where X denotes that no inference could be drawn. The overall
predicted occupancy vector, given the mutual distance between
node i and j, is given as:

B j
pre =

[
b j

1|infer, . . . , b j
n|infer

]
; b j

k|infer ∈ 0, 1, X (10)

Next, node i compares predicted B j
pre with received (from j

as advertised) B j
adv = [b j

1, . . . , b j
k..b

j
n] for each channel and

records the results using criterion in Eqn. (11). The ‘mis-
matches’ (denoted by β), and ‘matches’ (denoted as ϕ) are
recorded, and channels with value X in are considered ‘unde-
cided’ and recorded as μ. If Q j

k is the overall comparison
outcome, then:

Q j
k =

⎧
⎨

⎩

ϕ j if b j
k|infer = b j

k;
β j if b j

k|infer �= b j
k;

μ j otherwise
(11)

The total number of matches, mismatches and undecided for
each node j is denoted as ηϕj , ηβj and ημj such that ηϕj +ηβj +
ημj = n. This 3 tuple vector forms the trust evidence. The ϕj is
a treated as a positive rating, βj is a negative rating, and μj is
a neutral or uncertain rating. The more the number of positive
ratings relative to the overall number of ratings, more is the
positive behavior and vice-versa. The number of neutral ratings
increases or decreases confidence on our estimates which is
discussed in the next section. The complexity of this method is
O(mn), where m is the average number of neighbors of a node.
In a distributed DSA network, this complexity is manageable
as m << N with the sharing region being very small compared
to the deployment area.

V. TRUST MODELS

In this section, we propose two models, viz., optimistic and
conservative that use number of matches, mismatches, and
undecided variables to compute and manage node trust in a
distributed environment with malicious nodes.

A. Beta Distribution Based Optimistic Model

Given ternary evidence, we need to map the eventual deci-
sion on whether to trust or not. Since more number of matches
would intuitively denote more trustworthiness, we seek to
model trustworthiness as a relative frequency of matches to
the total number of possible outcomes. To account for the
number of undecided ημ j , we split ημ j into the ratio ηϕ j :ηβ j
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TABLE II
TRUST-CERTAINTY TUPLE; N=40

and add the corresponding fraction
η
ϕ j

η
ϕ j+η

β j
ημ j to ηϕ j in order

to generate the relative frequency of matches. We use this split
ratio as the attacks did not have any preference over the unde-
cided channels X, i.e., the attacks were uniformly random over
the channels.

Thus the proportion of matches is updated as ηϕ j+ η
μ j

η
ϕ j+η

β j
×

ηϕ j . The proportion or relative frequency of matches to the
total number of channels can be treated as the instanta-
neous trust value for node j as computed by node i and is
given by

E j,i =
ηϕ j + ημ jηϕ j

ηϕ j + ηβ j

ηϕ j + ηβ j + ημ j
(12)

where 0 ≤ E j,i ≤ 1. Values of E j,i closer to 1 indicate more
trustworthiness.

1) Bounds on Trust Values: By computing the bounds over
the trust value from Eqn. (12), we provide a certainty mea-
sure that express how much confidence we have over the
calculated value. This becomes particularly important to dis-
tinguish scenarios with high and low number of undecided.
The number of μ j’s can have any number of matches or mis-
matches which is unknown to the monitoring node. The trust
attains a maximum value if all μ j’s are matches and a mini-
mum value when all μ j’s are mismatches, i.e., E j,i

high = ηϕj+ημj
N

and E j,i
low = ηϕj

N respectively for the maximum and minimum
cases. The interval [E j,i

low, E j,i
high] depends on how large μ j is.

The larger this interval the lesser the probability of the true
relative frequency to be closer to the expected (trust) value.
Under uniform attacks, the extreme cases of all undecided
being either all matches or all mismatches is low, as there is
no preference over the channels attacked.

2) Certainty Over Trust Value: We argue that larger the
range δ = (E j,i

high − E j,i
low), lesser should be the confidence.

Hence we use 1 − δ as the metric that defines how much
confident or certain we are about E j,i. In cases where num-
ber of undecided are less, there are more known matches or
mismatches which makes the trust computation more certain.
Hence, when i assigns a trust value to a neighbor j where per-
fect information is not present, it uses metric called certainty
to indicate the confidence over E j,i. The certainty is defined
as a j,i = 1 − δ. The trust-certainty tuple for neighbor j is rep-
resented as (E j,i, a j,i). Higher a j,i indicates higher confidence
on the computed trust E j,i value.

For example, consider the three scenarios shown in Table II.
The first two scenarios have the same trust but the node
in Scenario 2 has more certainty, because true observations
are known on 37 out of the 40 channels. Thus the trust
value of scenario 2 will have more confidence than in sce-
nario 1. Similarly, scenario 3 is the least trustworthy followed
by 2 and 1.

3) Trust Evidence Coarsening: Now the proposed opti-
mistic trust heuristic does not match with any known
distribution, hence it lacks mathematical tractability, easy cal-
culation of higher moments, and 95% confidence intervals.
Additionally, it cannot be used in Bayesian systems where
update of parameters are based on incremental evidence due
to violation of Cromwell’s rule. Hence, we propose an approx-
imation of the optimistic heuristic with the well-known Beta
distribution that is widely used for trust modeling. Ternary
evidences can be alternatively modeled by coarsening it into
a binary space [20] to make it mathematically tractable with
Beta distribution [17]. Given that r is the number of positive
and s is the number of negative outcomes, the trust is given
by the mean of beta distribution with parameters specified by
α = r + 1 and β = s + 1. The mean of the pdf in Eqn. (13)
can accurately model trust metrics as:

E(p) = α

α + β
= r + 1

r + s + 2
(13)

Following this, we can treat the floor of the numerator in
Eqn. (12) as the coarsened number of matches denoted as
αc

j and N − αj = βc
j as the coarsened number of mismatches.

Given this, the trust value modeled as the expectation of a beta
distribution with parameters (αc

j + 1, βc
j + 1) is expressed as:

E j,i
beta = αc

j + 1

αc
j + βc

j + 2
(14)

where αc
j = �ηϕj +

ημjηϕj
ηϕj+ηβj

�. We can observe from Table II, that

Eqns. (12) and (14) almost give the same value. Hence we say
that modified beta expectation based trust values approximates
our optimistic trust heuristic. This observation holds true as we
assume the channels chosen for attack are uniformly random.

4) Analysis of Error Bounds: Suppose Pfa and Pmd are
the probabilities of missed detections and false alarms per
channel. Let the expected number of unwarranted mismatches
between two honest nodes caused by errors be given by βerror.
Similarly, αerror is the unwarranted matches which were actu-
ally mismatches. Let the PI and PB be the probabilities of a
channel to be idle or busy.

The probability that two honest nodes will legitimately have
a different opinion about a channel due to missed detections
and false alarms is

βerror = N(2PIPfa(1 − Pfa) + 2PBPmd(1 − Pmd)) (15)

Hence 	β
error number of mismatches on average could be
caused by errors, assuming each of the N channels have iden-
tical properties. Hence, βerror mismatches may be discounted
and does not amount to malicious behavior. The calculations
of PI , PB, Pf and Pm have been already studied extensively
in the existing literature.

The other error metric αerror can be calculated as:

αerror = N
[
1 −

{
PIPfa(1 − Pfa)(1 − Pattack) + PIP

2
faPattack

+ PI(1 − Pfa)Pfa(1 − Pattack) + PI(1 − Pfa)
2Pattack

+ PBPmd(1 − Pmd)(1 − Pattack) + PBP2
mdPattack

+ PB(1 − Pmd)Pmd(1 − Pattack)

+ PB(1 − Pmd)
2Pattack

}]
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Hence, the net error in terms of matches and mismatches is
±(βerror − αerror) for malicious nodes. This net error divided
by number of channels N is the approximate error in the trust
metrics which is the confidence interval over trust values. For
honest nodes, αerror is very small, because Pattack = 0.

B. Dirichlet Expectation Based Conservative Model

Through splitting the ‘undecided’ in the ratio of observed
matches and mismatches, we get to a trust metric which mod-
els behavior. However, such a split can be argued against
under scenarios like non-uniform or pseudo-random channel
preference of adversaries, high number of uncertain ratings
etc. Particularly coarsened binomial models cannot distinguish
between cases with very large and very small number of
uncertain ratings. Hence the use of a multinomial model for
trust modeling such as the Dirichlet distribution is required,
which is the multivariate generalization of the corresponding
binomial models.

Multinomial distribution is the generalization of the bino-
mial distribution with z > 2 possible outcomes where each
trial results in one out of z outcomes from a set of N pos-
sible trials. We can model match, mismatch and undecided
as the possible outcomes on the inference over each channel;
the total number of channels being N and hence z = 3. Thus
observation counts from the trust evidence fits very well with
concept of multinomial distribution. Given this, observation
for any node can be treated as multinomial distribution given
the probabilities of occurrence of each outcome.

General theory of Dirichlet distribution says that, if
x1, . . . xi, . . . xz are the unknown probabilities associated with z
events, and the evidence is dl, for the l-th event, then the poste-
rior degree of belief on each xl having accounted for evidence
parameter dl is given as p(xl|dl) = p(dl|xl)p(xl)

p(d)
. The evidence

parameter dl, is defined as dl = rl + Cal, where rl represent
the most recent count for event l and al represents a prior
base rate and C represents an a-priori constant whose value
depends on whether assumed prior is informative or not [18].

The above posterior p(xl|dl) can be calculated using the
posterior Dirichlet multinomial distribution function with vari-
ables �x = (x1, x2, . . . , xz) and parameters �d = (d1, d2, . . . , dz)

is defined as:

f (�x|�d) = 
(∑z

l=1 dl
)

∏z
l=1 (dl)

z∏

l=1

xdl−1
l , (16)

where x1, x2, . . . , xz > 0,
∑z

l=1 xz = 1, d1, . . . , dz > 0.
The relation between observation parameter dl and actually
observed outcome frequency rl where

∑z
l=1 al = 1 and

C > 0, al > 0 such that zero occurrence of an outcome
preserves the condition that dl > 0. Since trust is an expecta-
tion of positive behavior [15], the trust is given by the mean
vector for Eqn. (16) and is given as

E(xl|�d) = dl∑z
l=1 dl

(17)

The degrees of belief associated with the outcomes are
expressed as the mean of each outcome.

1) Applying Dirichlet Model to Trust Evidence: For our
scenario, the most recent observation vector is the multino-
mial trust evidence r = {ηϕ, ηβ, ημ}. Thus the data parameter
is defined as:, d1 = ηϕ + Ca(x1), d2 = ηβ + Ca(x2) and
d3 = ημ + Ca(x3). Since before trust establishment, there is
no reason to believe a node has a particular pre-disposition
to behave in a positive, negative or uncertain way, we assume
a uniformly distributed non-informative prior. Since there are
3 outcomes, the prior initial base rate is given by a(xl) = 1

3
and is set as C = 3. Given this d1 = ηϕ + 1; d2 = ηβ + 1;
d3 = ημ+1. Now that we have the parameters of the Dirichlet
distribution, we can express the expected degrees of belief
associated with the events of match, mismatch and unde-
cided in terms of the observed trust evidence using Dirichlet
distribution as:

Eϕ = ηϕ + 1

ηϕ + 1 + ηβ + 1 + ημ + 1
(18)

Similarly, Eβ = ηβ+1
ηϕ+ηβ+ημ+3 and Eμ = ημ+1

ηϕ+ηβ+ημ+3 . Hence

for each node j, we have Eϕ = Eb
ji representing degree of

belief, Eβ = Ed
ji representing degree of disbelief and Eμ = Eu

ji
reflecting degree of uncertainty of node j based on gath-
ered trust evidence of node i from the anomaly monitoring
phase.

2) Interpreting Belief Using Subjective Logic Theory: The
proposition that a node will cooperate can either be true
or false and hence is a binary proposition. However, due
to inherent uncertainty and imperfect knowledge caused by
lack of evidence, it is not possible to infer with certainty
that the proposition is true or false. Hence an opinion is
given about the proposition and trust is often reported as
the expected opinion [21]. This translates the problem into
degrees of belief, disbelief and uncertainty represented by
Eb

ji = b, Ed
ji = d, Eu

ji = u where Eb
ji + Ed

ji + Eu
ji = 1. Jøsang’s

belief model that utilizes Subjective Logic is popularly used
to deal with such uncertainty in a proposition with binary state
space, but having a multinomial evidence [21]. Josang’s defini-
tion of trust as an opinion ω = {b, d, u, a} is a quadruple where
the components respectively correspond to the belief, disbelief,
uncertainty, and relative atomicity such that b, d, u, a ∈ [0, 1]
and b + d + u = 1. The expected opinion pertinent to the pos-
itive interaction or belief is given as E(ω) = b + au, where
a is known as the relative atomicity which determines how
uncertainty contributes to the final expected opinion. Without
any information on the uncertainty dynamics in a system,
the usual value of a is equal to inverse of the proposition
state space cardinality, i.e., 0.5. Hence the expected opin-
ion on the proposition that the node is cooperative or not is:
Eω

ji = Eb
ji + (a)Eu

ji.
For the sake of illustrating the benefit of Subjective logic,

the scenarios shown in Table III represent trust evidence on a
particular time slot out of N = 40 channels for different nodes.
Scenarios 1, 2, 6 and 7 have occurrences of mismatches while
3, 4 and 5 do not. Intuitively, we would expect 3, 4 and 5
to have higher trust than 1, 2, 6 and 7. However, scenario 4
has high number of uncertain ratings as opposed to 5. The
previously proposed Optimistic Trust Model cannot capture
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TABLE III
TRUST-OPINION TUPLE; N=40

relative uncertainty in one value. Hence E j,i
beta from Eqn. (14)

gives the same answer for scenarios 4 and 5. This ambiguity is
resolved by our Dirichlet expectation model. The table values
use a = 0.5 for demonstrating the dummy scenarios. In the
results, we derive the appropriate value of a, my learning the
uncertainty dynamics under various environmental paramters.

If we observe the corresponding values in the Conservative
Trust Model, given by Eω

ji , we observe that it captures the pres-
ence of high number of uncertain ratings by generating a trust
value of 0.61 for scenario 4, whereas giving a higher value
of 0.86 to scenario 5, thus effectively differentiating between
scenario 4 and 5. We can also see that scenario 3 which has
less uncertain ratings than 4 but more uncertain ratings than 5,
has a trust value intermediate to the scenarios 4 and 5, thus
preserving consistency in the rationale that given no evidence
of mismatch, lower uncertain should be awarded with higher
trust. Hence the value Eω

ji does not have to necessarily depend
on the assumption of uniformly random attacks or the non
zero probability of not detecting a single channel’s attack.

For the conservative model to work properly, we should
expect that scenarios 1, 2, 6, 7 have low trust values than
3, 4, 5 as seen from Table III. However, among these scenarios
where there is evidence of mismatches, scenario 6 has most
number of matches and least undecided compared to the oth-
ers. Hence scenario 6 achieves higher trust value than 1,2,7
but lower than scenario 4.

3) A Conservative Trust Metric: Eω
ji is the expectation of

the belief that the node j as seen by i, and is a number between
0 and 1. The system needs to perform a regression to deter-
mine, if node j is malicious or honest. We have used the
generalized linear models (GLM) for this purpose. The expec-
tation is a continuous variable, while the response/predictor
variables is categorical (true/false, yes/no, etc.). In such cases,
we need a link function to provide the relationship between
the predictor variable (linear) and the mean of the distribu-
tion function defining the quality or regression score. This
concept is well documented in bounded rationality, decision
theory, prospect theory, and generalized linear classification
where errors distribution is unknown. rEω

ji
is the linear predic-

tor and Eω
ji is the mean, the link between them is established

by the following logic function. Hence, the use of Sigmoid log
as a link function is justified. Without this, it will be impos-
sible to guarantee a linearly separable trust distribution and a
threshold based classification to segregate the malicious and
honest nodes. A simple scaling function will not suffice. As
regards to the final step which scales the value between -1 and
+1, it is done to adhere to the standards of trust metric repre-
sentation, which is represented as a real number either between

0 and 1 or between -1 and +1 as discussed in [19]. Hence we
use a Sigmoid log function to map Eω

ji on to a real line where
non-trustworthy nodes have monotonically decreasing weights
and trustworthy nodes have monotonically increasing weights.
The log value based weight is given as:

rEω
ji

= log2

(
Eω

ji

1 − Eω
ji

)

(19)

We report the normalized conservative trust weight between
[−1, 1] using a scaling function that is given by:

wji =

⎧
⎪⎪⎨

⎪⎪⎩

1 − e
−|rEω

ji
|

if rEji
ω > 0;

−
(

1 − e
−|rEω

ji
|)

if rEji
ω < 0;

0 if rEji
ω = 0

(20)

where wji ∈ [−1, 1].

VI. MALICIOUS NODE IDENTIFICATION

For malicious node identification, we use the absolute value
of node j’s final trust weights which is the average of all trust
weights wji calculated by node j’s neighbors. Hence long term
average trust weights of a particular node j can be represented
as wj also known as reputation of a node, which is a collective
measure of trustworthiness. The decision on a node being ren-
dered as honest is usually done by a policy enforcement entity,
who collects this weights from each node about its neighbor-
hood and calculates the wj. One such method of collection
of trust ratings is the use of Distributed Hash Tables (DHT).
In such a case reports of trust neighborhood, may be vulner-
able to bad-mouthing attacks, but those issues have already
been addressed in works like [12] and [22], hence we treat
implementation issues pertinent to this as a black box. Those
methods can be seamlessly integrated with our method.

A. Trust Update Over Time

For the given attack model (except for ON-OFF attacks), a
cumulative equally weighted moving average for maintaining
node reputation makes sense. This is because decision of iso-
lation of a node needs to keep a long term history of behavior.
As instantaneous trust value of node j as calculated by node its
neighbor i at time t is wji(t). The cumulative moving average
is the average trust at time t for all of the interactions up to
that point of time. Hence at any time t, a node’s long term
average trust, wmavg

ji (t) is updated as:

wmavg
ji (t) = (t − 1)wmavg

ji (t − 1) + wji(t)

t
(21)

The cumulative moving average is essential to characterize
long term behavior or strategies of a node because it does
not cause loss of information over time unlike exponential
weighted moving average. The reputation of node j used to
decide whether node j is malicious or not, is average of
all wmavg

ji (t) pairs for each neighbor i who receives node j’s
spectrum data.
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B. Trust Update for ON-OFF Attacks: Special Case

Till now we have discussed attackers who either use deter-
ministic or probabilistic magnitude of attacks. In such attacks,
there is no preference on which time slots the attacks will
be launched. Thus for such cases, trust values over time can
be updated as equally weighted moving average, that would
reflect the true behavior over time. However, in ON-OFF
attacks, nodes have preferences over time periods where a node
may choose not to attack at all for some time and then attack
for some time with a random magnitude. In such a case, both
equally weighted moving average or exponentially weighted
moving average would not reflect true behavior of the node.
An equally weighted moving average will lag in reflecting
such attacks, while weighted moving averages will enable a
malicious node to quickly recover or redeem its reputation. In
such cases, the trust management framework should be such
that a node with a history of malicious or anomalous behavior
should not be allowed to recover its trust value quickly even
though it starts behaving well after a short burst of attack.

We propose a technique to deal with such ON-OFF attacks
from a socially inspired concept that bad actions are remem-
bered for longer than good actions. This forms the basis of
our asymmetric weighted moving average scheme, where slots
with instantaneous trust values wji(t) lower than a thresh-
old C are given more weight than slots where wji(t) has
higher values. The value of C is dictated by a system specific
risk attitude and defines what can termed as sufficiently good
behavior. For updating the trust values, there are two important
aspects: the cumulative average, and the current trust value.
Thus, we introduce four weighting factors χa, χbmax , χcmin and
χd such that 0 < χa < 1, 0 << χbmax < 1, 0 < χcmin << 1,
and 0 < χd < 1. Note that the fact that χcmin is much much less
than χbmax introduces an asymmetry. Now there may be four
possible scenarios at time t with regards to ON-OFF attacks.
Case(a): wmavg

ji (t − 1) > C and wji(t) > C

Case(b): wmavg
ji (t − 1) > C and wji(t) ≤ C

Case(c): wmavg
ji (t − 1) ≤ C and wji(t) > C

Case(d): wmavg
ji (t − 1) ≤ C and wji(t) ≤ C

For Case (a), a cumulative average higher than C sug-
gests a node is maintaining a sufficiently good behavior. If the
current trust value is also higher than C then it suggests con-
tinuity of the good behavior. Hence continuing good behavior
is rewarded with a high weighting factor χa to wji(t) and low
weightage given to wmavg

ji (t−1) using 1−χa with χa being the
rewarding factor. It helps a historically good node to improve
or at least maintain its reputation if it behaved in a cooperative
manner in this time slot t. Hence for Case (a) cumulative trust
is updated as: wmavg

ji (t) = (1−χa)×wmavg
ji (t−1)+χa ×wji(t).

For Case (b), a cumulative average higher than C and
wji(t) ≤ C suggests that a node maintained a sufficiently
good behavior upto time t − 1 and but has initiated some
anomalous behavior in t. Hence all the good behavior until
now needs to be forgotten and very high weight needs be
given to current slot’s anomalous behavior. Hence wji(t) is
weighted with a high value χbmax and wmavg(t−1)

ji is weighted
using 1 − χbmax with χbmax being the punishment factor. The
higher is the value of the punishment factor, quicker and more

severe will be the system towards new evidences of malicious
behavior. In such a case, the cumulative trust is updated as:
wmavg

ji (t) = (1 − χbmax) × wmavg
ji (t − 1) + χbmax × wji(t).

For Case (c), a cumulative average lower than C but a cur-
rent trust value higher than C signify a node whose current
behavior is cooperative but has a history of anomalous behav-
ior. Hence we assign wji(t) a very low weight χcmin and assign
wmavg(t−1)

ji a wight of 1 − χcmin with χcmin being the redemp-
tion factor. It controls how fast or slow a node with malicious
history can redeem itself by demonstrating good behavior for
a sufficiently long time. In such a case, the cumulative trust is
updated as: wmavg

ji (t) = (1−χcmin)×wmavg
ji (t−1)+χcmin ×wji(t).

For Case (d), both cumulative average and current trust
value of node j are below C indicating continuing anoma-
lous behavior. In such a case, we use a weighting factor of χd

to wji(t) and 1−χd to wmavg(t−1)
ji , with χd being the retrogres-

sion factor. In such a case, the cumulative trust is updated as:
wmavg

ji (t) = (1 − χd) × wmavg
ji (t − 1) + χd × wji(t).

The above scheme termed as the asymmetric weighted mov-
ing average is effective in defending against ON-OFF attacks
which is not possible using equally weighted or exponential
weighted moving averages.

C. Machine Learning Based Classification Threshold Design

A classification threshold needs to be computed for trust
based identification of malicious nodes. We propose the thresh-
old design using a supervised machine learning approach that
learns all network, radio, and topological parameters that affect
the trust value distribution. The threshold learning has a train-
ing phase and a model selection phase. The purpose of a
training phase is to learn/predict different candidate thresh-
olds for different training sets. A training phase is like a
controlled environment where the defender performs some
small scale experiments with a set of training nodes by vary-
ing few network parameters. Few of such training nodes are
programmed to act as malicious while the others behave as
honest. The proposed model is then applied, and the nodes
programmed as honest and malicious nodes end up with some
trust values. Subsequently, both the trust value and label of
each node (ground truth in training) is supplied to the Support
Vector Machine (SVM) classifier. The SVM classifier learns
the difference between malicious and honest nodes in terms of
their trust values. Based on this learning, the SVM outputs an
optimal hyperplane guarentees maximum separation between
the honest and malicious labels. This hyperplane produces a
threshold for each training set. The most appropriate training
set is one that exhibits least under or over fitting is selected.
The corresponding threshold of the selected training set is
then applied for classification in an unknown real deployment
known as testing set as shown in the results.

We generate training data sets for different path loss envi-
ronments ω and varying Pattack with worst case standard
deviation of shadow fading. Our objective is to find an optimal
threshold C that can decide whether a node is malicious or
not. To design appropriate training sets, we need to explore
the effects of these features upon the trust values.
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TABLE IV
EFFECT OF PATHLOSS ON UNCERTAINTY

Effects of pathloss environment: The variation of the
pathloss exponent affects the degree of uncertainty in the out-
put of the anomaly monitoring technique. Our experiments
show that a network with pathloss exponent of 4 (neither high
or low) induces maximum uncertainty, while pathloss expo-
nents lower or higher than 4 (say 3 or 5), lowers the average
degree of undecided. The reason for this is that if signals decay
too fast or too slow for higher and lower pathloss exponents,
the chances of both Phigh and Plow being either above or below
the particular normalizing threshold γth within the radius sij

is increased. Given all the other factors remain the same, and
if the pathloss exponent is neither too high or too low, the
chances of both Phigh and Plow being above or below γth

decreases. This is evident from our experiments which calcu-
lates the average degree of uncertainty for all nodes across the
network for different pathloss environments listed in Table IV.
While pathloss exponent as low as 3 or as high as 5.5, gen-
erates lower average Eμ of 0.16 and 0.20 respectively, an
intermediate pathloss exponent of 4, produces Eμ as high as
0.42. Lack of information increases the difficulty of a classi-
fication problem. Hence, classification becomes harder when
pathloss is around 4 and easier when the pathloss exponents
are on the extremes. Thus, we are motivated to use training
sets considering different pathloss environments.

Effects of magnitude of attack: It is intuitive that under
an effective monitoring mechanism, the more a node attacks
the more it exposes itself for detection. Though a malicious
node can decrease its magnitude of attack to evade detec-
tion, it beats the purpose of attacking the network. Thus, the
malicious nodes will have to strike a balance between attack-
ing and avoiding detection. The optimal attack strategy in
multi-channel systems is 0.5 as shown in [24]. In general, if
we can detect for lower magnitudes of attack, we can detect for
higher magnitude of attack as well. Hence, we use training data
sets mostly considering lower magnitudes of attack to thwart
sub optimal conservative attackers. Hence, we choose magni-
tude of attack as 0.3. This value is much less than the half
way value of 0.5. Hence, it induces less underfitting. However
very low magnitude for training sets will over fit and we may
classify honest nodes as malicious because some percentage
of channels for honest nodes are altered due to Pf , Pm, and fl.

Training data sets: We use one training set for pathloss
ω = 3, 4 and 5 each with magnitude of attack 0.3. We assume
the worst case standard deviations of σs = 6 dB and σl = 12
dB due to shadow fading. We observe the trust values of the
honest and malicious nodes. We run a support vector machine
(SVM) over training examples which maps the trust values
into support vectors and find the optimal hyper-plane which
in our case is a single line due to the linear nature of the data
with only one feature, i.e., the trust value. Figures 2, 3(a), 3(b),

Fig. 2. Training Phase Threshold Prediction: Pathloss=4; Pattack = 0.30.

Fig. 3. Alternative Candidate Thresholds (a) Pathloss=3, Pattack = 0.3
(b) (a) Pathloss=5, Pattack = 0.3.

show results for the candidate thresholds obtained by a Support
Vector Machine for each training data set. + represents the
labels corresponding honest nodes and ∗ represents labels cor-
responding to the malicious node. The solid line separating is
the output threshold learned by the Support Vector Machines
based on the labels in the training set. The threshold predicted
in this way, will be applied to a testing set of different network
features and unknown labels of nodes.

Rationale for model selection: The lower region of the SVM
contains labels corresponding to malicious nodes and the upper
region contains labels that correspond to the honest nodes. Our
objective is to mimic some worse case scenarios for classifica-
tion. Thus we emphasize on the lower probabilities of attack
0.3 where classification is harder and an intermediate path loss
environment with highest inherent uncertainty in the evidence.
Hence, SVM output of Figure 2, is chosen as our classification
threshold C = 0.17.

Alternative candidate thresholds are shown in
Fig. 3(a), and Fig. 3(b). To prove why the above train-
ing sets with Pattack = 0.30 are sufficient, we plotted Fig. 4(a)
and Fig. 4(b), where Pattack = 0.50 and 0.80 respectively. In
both cases, their thresholds are much lesser and the difference
between support vectors of honest and malicious labels are
higher. This is much easier to classify, hence this option does
not dominate the threshold for lower magnitudes of attack.

VII. TRUST BASED ROBUST FUSION

Though steady state values of trust are ideal for node iden-
tification and classification, such values do not necessarily
contribute towards robust fusion given our adversarial model.
In dynamic systems, waiting for convergence for filtering out
spurious reports is not an option. This is also relevant in an
ad-hoc CR network in three ways. First, nodes may be highly
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Fig. 4. Under Fit Training Sets (a) Pathloss=3, Pattack = 0.50 (b) Pathloss=3,
Pattack = 0.80.

mobile, hence the neighbors of a node are not long lasting
entities. At the same time however, a decision on the chan-
nel occupancy needs to be made from the reports of current
neighbors. Hence maintaining history of updates of trust value
of neighbors may not be a prudent idea in a distributed CR
network. Second, fusion performance is dependent on sce-
nario in the current time slot. The past has no bearing on
the spectrum occupancy of the present slot or prior nature of
honesty/cooperative behavior as far fusion is concerned. Third,
the proposed attack measure Pattack is a long term value, but
a particular realization of Pattack at a particular time, may be
different from the mean value of Pattack. For example, a mali-
cious node has Pattack = 0.60, but at a particular time slot only
0.3 fraction of channel may have been attacked. In that case,
at this time slot it has contributed on 70% of the channels.
In such a case, if we isolate this report based on long term
reputation based exclusion, we will lose the majority of honest
opinions along with the minority falsified opinions. However,
instantaneous or transient trust or reputation is an index of hon-
esty/cooperative behavior on the current interaction. Since only
current interactions are important as far as spectrum sensing
usage reports are concerned, steady state trust values should
not be used as a metric for exclusion of spectrum sensing
reports on each time slot.

Using the computed instantaneous trust coefficients, we
study the performance of two fusion schemes: Trust based
fusion and Conservative trust based fusion. We compare their
performance benefit by comparing it with Blind Fusion.

A. Blind Majority Voting Based Fusion

For blind fusion, node i considers all its neighbors to be
honest and includes B j

adv from all its neighbors along with
its own Bi

act. We formally define Blind Fusion as BFi
blind =

∇[B j
adv ⊕ Bi

act], j ∈ Ni where ∇ is the operator for majority
voting rule. Majority voting is a popular fusion rule where
final fused inference on a channel is based on what at least
half the neighboring nodes advertise with all the nodes treated
equally. ⊕ is the operator for combination.

B. Optimistic Trust Based Fusion

We propose a fusion scheme whereby we only consider
neighboring nodes whose E j,i is higher than some trust thresh-
old, opt. (Later in Section VIII, we show how to find the
optimal threshold). Thus, for trust-based fusion, node i only
considers those neighbors whose E j,i ≥ opt. In effect, the

fusion is done with information from trusted nodes only.

If E j,i
t

{≥ opt Node j′s report trusted;
< opt Node j′s report not trusted.

(22)

C. Conservative Trust Based Fusion

Similar, to the above, we propose to only consider nodes
in the conservative model, that are above a threshold c

opt
such that

If wt
ji

{≥ c
opt Node j′s report trusted;

< c
opt Node j′s report not trusted.

(23)

D. Performance Analysis Measures

We evaluate the performance of robust fusion and malicious
node detection in terms of the following measures.

Percentage of mismatches: We define Trust Based Fusion
result as: TBFi = ∇[TFSi ⊕ Bi

act]; where TFSi is the trusted
fusion set of binary vectors accumulated by node i using
Eqn. (22), which includes B j

adv of trusted nodes only.
Although the nodes are not aware of the ideal scenario, we

are aware of what would have been the ideal fusion result,
which is the case when for all node j ∈ Ni, B j

act = B j
adv, so we

define Ideal Fusion result for node i, BFi
ideal = ∇[B j

act ⊕Bi
act].

This is later used for comparing the performance of fusion
with fusion schemes 1 and 2 by measuring deviation from
ideal result.

Percentage of true negatives and accurate detection: These
measures are used to establish how well our malicious node
identification works compared to existing research. Percentage
of True Negative is the number of malicious nodes successfully
captured from all malicious nodes. A more strict measure is the
percentage of accurate detection that considers the possibility
of honest nodes being declared as malicious.

VIII. SIMULATION RESULTS

To validate the trust model, we conduct extensive simulation
experiments. We consider a primary network of 600 × 600km
as shown in Fig. 13. 40 primary transmitter towers are pois-
son distributed near the central areas to avoid edge effects. The
smaller secondary networks are contained within the primary
network as sub-networks. This ensures a good mix of available
and non-available channels. For the training set, we consider a
60×60 km grid with 30 randomly scattered (Poisson) nodes– 9
of which are programmed to be malicious. Both Iattack and
Pattack described in Section III are varied from 0.10 to 0.95.
The malicious nodes are non-collaborative by default on the
channels they falsify unless explicitly mentioned otherwise
and the number is dictated by Iattack and Pattack. We also pro-
vide some results from malicious adversaries perspective. Each
node scans 40 channels and has a report sharing radius of
20 km units. The secondary nodes are considered stationary.

For the secondary network corresponding to the testing set,
we consider a sub-region of 200×200 km with 100 nodes,
within the primary network. The malicious nodes in the test-
ing set are divided into three groups, each with low, medium
and high magnitudes of attacks. The testing set contains 30%
malicious nodes. We also vary the path loss exponent ω from 3
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Fig. 5. Simulation Scenario showing primary and secondary networks.

Fig. 6. Effects between collaborative and non-collaborative SSDF.

to 5, while the fading standard deviations are 5 dB and 10 dB
respectively. We also provide some results from malicious
adversaries perspective. Sections VIII-A have the details of
attack emulation for collaborative vs. non-collaborative SSDF
attacks and Pattack vs. Iattack respectively. Section VIII-C shows
how results are affected with varying pathloss environments
and different emulated magnitudes of attack.

A. Non-Collaborative vs. Collaborative SSDF Attacks

In Fig. 6, we compare the damages inflicted by collabo-
rative SSDF versus non-collaborative SSDF on the network
in terms of the percentage of mismatches for blind fusion
without any defense. We observe that collaborative attack is
able to damage more for most Pattack values, except when
Pattack > 0.80. From Fig. 6, the conclusion is that for Pattack,
collaborative SSDF is a better attack strategy in terms of the
deviations it causes from the ideal result. However, collab-
orative SSDF becomes less effective than non-collaborative
counterpart when Pattack > 0.8. This is because when Pattack is
high for all malicious nodes, there will automatically be many
common channels in the attacked set, even when attacked inde-
pendently. Hence an implicit collaboration follows. However,
it must be noted that cost of collaboration between malicious
nodes is higher than non-collaboration and may not always be
feasible. Magnitude for collaborative attacks is always dictated
by Iattack while for non-collaborative it can be either Iattack or

Fig. 7. Trust of honest and dishonest nodes for Pattack = 0.60.

Fig. 8. (a) Node 20’s (malicious node) trust (b) All malicious nodes trust.

Fig. 9. Instantaneous and average trust for Iattack = 0.50: Node 20 as
observed by Node 10.

Pattack. The comparison of results between Iattack and Pattack

is given later in Figures 9 and 10.

B. Optimistic Trust Model

In this subsection, we discuss all relevant results for the
optimistic trust model.

Trust measurement: In Fig. 7, we observe the difference in
trust distribution between malicious and honest nodes when
Pattack is 0.6. The trust is evaluated as the average by all its
neighboring nodes after 500 time slots. It is evident that mali-
cious nodes have trust values significantly lower than those of
the malicious nodes.

In Fig. 8(a), we show how the trust varies for possible val-
ues of Pattack for a particular node (node no. 20 in this case).
We also show the average trust for all nodes in Fig. 8(b).
As expected, higher attack probabilities result in low trust
for both cases. An interesting and intuitive observation from
Figs. 7, 8(a) and 8(b) is that the trust of malicious nodes
converge to 1 − Pattack.

Comparison between Pattack and Iattack: For Iattack, the total
number of channels remain same in every time slot although
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Fig. 10. Instantaneous and average trust for Pattack = 0.50 for node 20 as
observed by node 10.

Fig. 11. Optimal threshold (opt) for trust based fusion.

individual channels attacked vary. On the other hand, Pattack

induces more uncertainty where the number of channels as
well as channels attack vary. In Figures 9 and 10, we see how
the instantaneous and average trust varies for Iattack and Pattack,
respectively. The higher variance, and therefore slower conver-
gence (80 time slots instead of 40 for Iattack), for Pattack makes
it difficult for defenders to compute the trust values quickly.
Thus, from a malicious node’s perspective, it is advantageous
to employ Pattack.

Choosing the optimal threshold: For the optimistic system,
the value of threshold opt for trust based fusion using
different candidate thresholds () ranging from 0.2 to 0.8.

Fig. 11, shows that for very low values of hypothetical
thresholds, there are more mismatches since most of the mali-
cious nodes are included for fusion. However, as we increase
this threshold, malicious nodes start getting discarded and mis-
matches decreases. However, when the threshold is very high
(above 0.6), the mismatches increase again because informa-
tion from nodes with higher trust values also get discarded.
The minimum number of mismatches occurs for the range of
threshold values from 0.45 to 0.51. For the rest of the results,
we use opt = 0.5 since beyond this point the damage is more
than the benefits of cooperation.

Blind fusion vs trust based fusion: In Figures 12(a) and
12(b), we show the percentage of mismatches for all Pattack

values ranging from as low as 0.05 till 0.95. We observe
that the percentage of mismatches are far less for trust based
fusion which filters out spectrum reports from potentially dis-
honest nodes rather than blind fusion. More specifically, we
see that the percentage of mismatches is always less than
3% of the total channels for both Iattack and Pattack equal

Fig. 12. Blind Fusion vs Trust Based Fusion (a) Under Iattack (b) Under
Pattack .

Fig. 13. Testing Set Worst Case Performance: Pathloss=4.2.

to 0.2. For Pattack = 0.05, the percentage of mismatches is
1% for Iattack and 0.7% for Pattack. For Pattack = 0.10, it is
about 1.2%. Hence, it is clear that for lower magnitudes of
attack the network is not significantly damaged hence they
are allowed, and hence the blind fusion and trust based fusion
have almost similar mismatches. However, when the attack
magnitude increases, the trust values of malicious nodes fall
below the desired threshold opt and their false opinions get
filtered out decreasing mismatches.

C. Conservative Trust Model: Malicious Node Identification

We consider a network with 100 nodes a fraction of which
is malicious. The malicious are divided into three groups with
Pattack 0.3, 0.5 and 0.8 respectively. The threshold selected
from the chosen model should be able to capture such nodes,
under any pathloss exponent. This testing set had 27 ran-
domly chosen malicious nodes and each group has 9 nodes.
We consider pathloss exponent of 4.2, 3.5 and 5.2.

Identification of malicious nodes (Pathloss=4.2): We use
C = 0.17, for the testing set with pathloss 4.2. This was
inferred from training phase threshold selection. We observe
that 27 nodes regardless of their Pattack have been accurately
classified as malicious as they all have trust values below
0.17 as shown in Fig. 13. Two malicious nodes narrowly miss
detection in mainly due to low Pattack.

Identification of malicious nodes (Pathloss=3.5 and 5.2):
Now we show the performance for other environments with
ω = 3.5 and ω = 5.2. with the inferred C = 0.17.
Fig. 14(a) and Fig. 14(b), show that in the worst case fad-
ing, the classification is accurate, and is able to distinguish
most of the honest nodes from malicious ones.



BHATTACHARJEE et al.: QUANTIFYING TRUST FOR ROBUST FUSION WHILE SPECTRUM SHARING IN DISTRIBUTED DSA NETWORKS 151

Fig. 14. Testing Set Worst Case Performance (a) Pathloss=3.5
(b) Pathloss=5.2.

Fig. 15. Performance: High density (ρmal = 60%) of collaborative malicious
nodes with Pattack = 0.80.

Higher densities of collaborative SSDF: Normally, Kullback
Leibler divergence, voting based reputation, entropy and aver-
age SNR divergence techniques do not work when fraction
of collaboratively malicious to the total participating nodes
are above 50%. In distributed networks, local topology vari-
ations may cause a node to have more malicious neighbors
than honest. To test whether our proposed model works in
such situations, we simulate with minority honest nodes (11 of
them) and malicious nodes (19 of them). From Fig. 15, we
can see that there is a significant difference between honest
and malicious even under high density (60%) of collabo-
rative malicious nodes, an improvement from voting based
exclusion.

D. Robust Fusion Using Conservative Trust Weights

Fig. 16(a) shows the performance of the proposed conserva-
tive trust based fusion model as opposed to blind fusion. We
use the threshold of 0.50 with the rationale that nodes that
damage more than when they cooperate is not considered. For
conservative fusion, we choose 0, which is the equivalent of
0.50 for the conservative trust model when trust values are
bounded between the interval [-1,1], because ln( 0.5

1−0.5 ) = 0.
As expected, trust based fusion has lower number of mis-
matches. The same also holds true even if the malicious nodes
launch collaborative attacks where they agree upon select
channels. However, when Pattack is employed, the trust based
fusion gives more mismatches than blind fusion as can be
observed in Fig. 16(b). Hence an important inference is that
when Pattack is low (< 0.5) for collaborative SSDF, trust based
fusion that disregard nodes based on their trust values in not an
effective approach. This is effective for selfish SSDF attacks,

Fig. 16. Conservative trust based fusion (a) Non-collaborative Pattack
(b) Collaborative Pattack .

Fig. 17. Comparison of Proposed Trust Model (a) With KL distance method
(b) With majority voting based exclusion.

where the magnitude of attack is low and nodes collaborate to
falsify on specific channels. Thus, a different defense strategy
is required for very low intensity collaborative SSDF attacks.

E. Comparison With Existing Research

We seek to compare the benefits of our proposed trust
based malicious node detection scheme with a few existing
research works. We use our conservative trust model with KL
divergence [25] or majority voting based exclusion (decouple)
method [11]. We compare the percentage of accurate detection
over various fraction of malicious nodes for different Pattack.
In Fig. 17(a), we observe that under various values of frac-
tion of malicious nodes and Pattack, our method using wj value
yields much better results than existing researches discussed
in [24] and [25] particularly under high fractions of malicious
nodes or high Pattack. In Fig. 17(b), we compare our work
with another recent work [11]. We report significantly high
true negative detection percentage across different malicious
node fractions.

F. Defending Against ON-OFF Attacks

For ON-OFF attacks, we limit our simulation study to
the trust dynamics of a particular node 20 which launches
ON-OFF attacks in five stages over 500 slots. In ‘Stage 1’,
it behaves cooperatively and does not attack on any time
slots from t = 0 to t = 100. In ‘Stage 2’ the node attacks
with a random fraction of channels on each time slot from
t = 101 to t = 150-th slot. In ‘Stage 3’ it does not attack
for the next 100 slots till t = 250. In ‘Stage 4’, it attacks
from t = 251 to t = 300 just like Stage 2. In ‘Stage 5’, the
node does not attack for the next 200 slots till t = 500. We
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Fig. 18. Asymmetric moving average vs equal weighted moving average.

Fig. 19. Asymmetric moving average vs. exponentially weighted moving
average.

plot the results of ON-OFF attacks seen by one of its neigh-
bor, node 29 using equations from the asymmetric weighted
moving average discussed in Section VI-B. We compare the
results with other popular trust update schemes and justify
suitability of asymmetric averaging with regard to ON-OFF
attacks.

Choice of weighing factors and threshold: The weighing
factors χa, χbmax , χcmin , and χd are chosen as 0.999, 0.999,
0.001 and 0.001. We can verify that this satisfies the con-
ditions: 0 < χcmin << χbmax < 1, 0 < χa < 1, and
0 < χd < 1. From the skewed values of the weighing fac-
tors χcmin and χbmax , it justifies the asymmetry that we provide
by giving negative behaviors a very high weightage and pos-
itive behavior and very low weightage on the first occurrence
of negative behavior. The choice can χa and χd can be used
to control the rate of trust redemption. If a system requires
slower trust redemption that lower value of χa and lower
value of χd is necessary. Since there is no particular magni-
tude of attack we keep the mid point between the trust value
range (−1,+1) as C = 0. However, C can be adjusted
according to the requirements of the system. More conser-
vative systems will have C > 0. Different values of χmin

and χmax can be chosen to ensure more fairness to nodes
in a network inherently susceptible to more bit flips due
to noise.

Comparison with equal weighted moving average: In
Fig. 18, we show how the proposed asymmetric weighted
moving average performs as opposed to the equal weighted
moving average. We observe that at Stage 1 with no attacks,
both schemes preserve a high trust value, but when attacks
start from the 101st time slot for the next 50 slots, asym-
metric weighted moving average ensures cumulative trust is
decreased more rapidly and preserves a low value. Equal

weighted moving average is slow to react due to the node
having behaved well in the first 100 slots. This happens
because once current value in a slot is less than zero, the
model forgets previous high reputation through a very low
value 1 − χbmax = 0.001 and expresses extremely high weight
χbmax = 0.999 to the current values from the 101st time
slot, thus causing the cumulative trust at stage 2 to decrease
rapidly. In the beginning of Stage 3, when the attack ceases,
we see that trust value reflected by asymmetric average is low
enough (−0.25) to reflect node’s malicious history while equal
weighted moving average fails to capture because the ON-OFF
attack ratio is 1:2, i.e., more slots with no attacks. This hap-
pens because, previous cumulative trust of less of than zero at
the end of Stage 2 is given a very high weight compared to
current honest behavior. It prevents the trust values to improve
even during honest behavior.

In Stage 4, when attack starts after honest behavior for 100
slots, we see the significant difference between the trust values
of the two schemes is preserved. Same is the case in Stage 5,
where the reasons of a very slow increase in trust values under
asymmetric average compared to equal weighted average is the
difference in weighing factors assigned to previous and cur-
rent trust values. Hence, we conclude that asymmetric weights
can offer the benefits not provided by equal weighted moving
average in terms of reacting quickly to ON-OFF attacks and
preserving a low trust value of a malicious node. Through this
scheme we have ensured that even though it targets only 100
out of 500 slots, the model can identify such nodes.

Comparison with exponential weighted moving average:
The major criticism of exponentially weighted moving aver-
age was that although it reacts quickly when attacks start, it
also forgets malicious behavior as quickly as it reacts. This is
inappropriate because a malicious node should not be allowed
to increase its trust value quickly unless it engages in a long
period of honest behavior to redeem its trust. The key point
where a difference is created is case(c) of the ON-OFF defense
schema where we provide very low value to honest behavior
after a period of dishonest behavior. Hence it’s cumulative
trust value hardly increases. In Fig. 19, we do not see much
difference in Stage 1 due to no attacks. Also there is not
much difference is Stage 2 as there more weight given to
new trust values by both models. However, in Stage 3, expo-
nential weighted moving average allows the malicious node to
quickly recover its trust value owing to forgetting old values.
On the other hand, asymmetric average selectively does not
forget old values that are low. This happens because, previous
cumulative trust of less of than zero (selected on_off ) at the
end of Stage 2 is given a very high weight compared to current
honest behavior. It prevents the trust values to improve even in
the period of honest behavior. We see that for all subsequent
stages the exponentially weighted averages oscillates between
high and low values, but asymmetric average preserves a low
value all the while at the same time allowing fairness by allow-
ing very slow increase of cumulative trust at stage 5 owing
to its continuous good behavior for 200 slots. This provision
also helps nodes which experience noise to eventually redeem
their trust on experiencing good transmission channels as we
see next.
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IX. CONCLUSION

In this paper, we proposed a spatio-spectral anomaly detec-
tion technique that is able to gather evidence that reflects
malicious behavior of nodes in a distributed cognitive radio
network without location information. Based on the evidence
gathered from the anomaly detection technique, we propose
two trust models: an optimistic one and a conservative one.
We show that the optimistic trust heuristic can be approxi-
mated by a modified coarsened beta distribution. Subsequently,
we use a Dirichlet distribution inspired trust model that
is conservative in its assumptions. We propose a learning
approach towards identification of malicious nodes under dif-
ferent pathloss environments and magnitudes of attack. Results
exhibit that the proposed models perform significantly better
than other models under a variety of pathloss environments,
different densities of malicious nodes, varied magnitudes of
attacker collaboration, and attack models such as, probabilis-
tic SSDF, deterministic SSDF, and ON-OFF attacks. We also
show significant improvement in trust based fusion where we
disregard possible reports from potentially less trustworthy
nodes using instantaneous trust values for both trust mod-
els. We also analyze different attack measures like Pattack and
Iattack and discuss which is better technique from the malicious
user’s perspective. We also show the effects of collaboration,
and non-collaboration from malicious nodes in terms of the
damages they can cause to the network. As part of future work,
we will perform optimization and design trade-offs based
on a detailed cost-benefit analysis of the ensuing complexity
and overhead of our proposed distributed trust management
scheme on distributed DSA networks.
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