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ABSTRACT
Byzantine attacks have been identified as one of the key
vulnerabilities in cognitive radio networks, where malicious
nodes advertise false spectrum occupancy data in a cooper-
ative environment. In such cases, the resultant fused data is
very different from the actual scenario. Thus, there is a need
to identify the malicious nodes or at least find the trustwor-
thiness of nodes such that the data sent by malicious nodes
could be filtered out. The process is complicated by presence
of noise in the channel which makes it harder to distinguish
anomalies caused by malicious activity and those caused due
to unreliable noisy channels.

This paper proposes a scheme for trust based fusion by
monitoring anomalies in spectrum usage reports advertised
over unreliable channels by secondary nodes which leads to
evaluation of trust of a node by its neighbors. The calcu-
lated trust is then used to determine if a neighboring node’s
advertised data could be used for fusion or not. We provide
a heuristic trust threshold for nodes to disregard malicious
nodes while fusing the data, which holds good for any proba-
bility of attack. A trust coefficient is calculated based on in-
teractions with peers in a distributed manner. Results show
that even at higher probabilities of attack (0.8 and above),
95% of the nodes generate fused data with accuracy as high
as 84%. We compare our results of trust based fusion with
blind fusion scheme and observe improvement in accuracy
of fusion from individual nodes’ as well as overall network’s
perspective. We also analyze an alternative weighted trust
fusion technique and evaluate its performance. We find that
at lower probabilities of attack a malicious node’s contri-
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bution to the overall gain in cooperation is more than the
damage done. We observe that above a critical value for
probability of attack of 0.40, the overall gain in cooperation
is compromised if the malicious nodes are considered in fu-
sion. We also discover that an honest node’s benefit due to
cooperation depends on its relative position with respect to
the spatial orientation of malicious nodes.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General-
Security and Protection; C.2.1 Network Architecture and
Design - Distributed Networks, Wireless communication; C.4
[Performance of Systems]: Fault Tolerance

General Terms
Algorithms, Performance, Security, Theory

Keywords
Cognitive radio networks, attacks, anomaly detection, trust
coefficient, fusion

1. INTRODUCTION
In cognitive radio (CR) paradigm, unlicensed (secondary)

users opportunistically operate on parts of spectrum in ab-
sence of primary (licensed) users [10]. The primary regu-
latory aspect of this paradigm is that unlicensed CR nodes
should relinquish their allocated channels and move to an-
other available channel as soon as they are able to learn or
sense the presence of licensed user on that channel. To re-
duce uncertainty in true spectrum map caused due to wire-
less characteristics like multi-path fading, shadowing, etc,
these nodes engage in cooperative or collaborative spectrum
sensing [3, 13], where nodes share their locally sensed re-
ports, and the final inference on spectral occupancy is a fu-
sion of multiple locally sensed spectrum reports. However,
this feature introduces a vulnerability where the utility of co-
operative sensing is crippled due to Byzantine attacks [1, 8],
where malicious nodes advertise altered local sensing results.
The motive behind such behavior may be selfish (gaining
more spectrum resources) or malicious (crippling the opera-
tion of other nodes). Also locally sensed reports when send
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to neighbors (in ad-hoc CR network) or to a central fusion
center (in infra-structured CR network) may be altered due
to channel noise regardless of malicious behavior. One way
to track the occurrence of such attacks is to monitor anoma-
lies in received spectrum reports, but this process is compli-
cated by the fact that they are garbled by channel noise.
Since such actions are hard to detect, either the malicious
nodes remain in the network undetected, or honest nodes
get penalized.
As far as countering Byzantine attacks are concerned, there
are two approaches: isolating malicious nodes [7] or robust
fusion [1]. The current literature mostly focusses on infra-
structured CR network where a central fusion center fuses
advertised local reports from individual nodes of the net-
work. Anomaly detection is a feature that may be used
for tracking possible malicious misbehavior. For example,
anomalies in packet forwarding to unravel routing misbe-
havior [9]. Detected anomalies against a node can be used
as an evidence that decides the trustworthiness of that node.
The authors in [12], discuss a concept of moulding success
and failure counts in packet forwarding into trust evidence
from which trustworthiness in relation to routing is calcu-
lated. Presence or absence of packet forwarding anomalies
provide success and failure counts which are used to build
and manage trust in a traditional ad-hoc network. For trust
management in CRN paradigm, authors in [2, 11], provide a
framework that builds and maintains trust metrics based
on beta distribution in a centralized CR network. Both
of these works assume that success and failure counts are
known, and do not provide a way to decide for success or
failed cooperation which is utilized to calculate and main-
tain trust. The question on how to build a concrete trust ev-
idence in cooperative CR networks is an unsolved problem.
This motivates us to provide a comprehensive framework
which gathers trust evidence based on monitoring anoma-
lies in advertised local spectrum reports in an ad-hoc CR
network, subsequently leading to calculation of a fair trust
coefficient associated with each node. The trust is used as
a metric that decides whether a particular node’s advertise-
ment is used in the fusion or not.
In this paper, we propose a trust based fusion model ensur-
ing robust fusion for individual nodes in coexistence with
malicious Byzantine nodes in an ad-hoc CR network. The
nodes need not know the locations of other nodes which
also eliminates the possibility of nodes advertising false lo-
cation. All nodes share their individual sensing reports
with their neighbors, and in the absence of a fusion cen-
ter, each node is expected to fuse the reports advertised
by its neighbors. Each node evaluates a trust coefficient
for all its neighbors based on anomalies detected in sensing
reports. This method provides upper and lower limits on
possible received power levels on the channels of the operat-
ing spectrum. Then normalization criteria is used to build a
predicted spectrum occupancy report for a particular node.
This is then compared with that node’s actually advertised
binary spectrum report for mismatches which are termed
as anomalies. The mismatches and matches form the trust
evidence based on which fair trust coefficient is calculated.
Higher trust value signifies more trustworthiness. To provide
fairness due to anomalies caused by unreliable wireless chan-
nel properties, we define two models: an instantaneous fair
trust model and a cumulative trust model. These provide
two possible ways to provide fairness so that trustworthiness

of honest nodes is not penalized. Furthermore, we provide
a trust based fusion scheme that allows individual nodes
to disregard malicious nodes data from fusion thus making
it robust. It may be noted that the goal is not to isolate
malicious nodes but to provide a robust and fair fusion in
presence of malicious nodes.
To validate our proposed model, we perform simulation ex-
periments on a customized simulator. We find that our pro-
posed framework ensures that malicious nodes have trust
values lesser than those of honest nodes which is indepen-
dent on the intensity/severity of attack launched by ma-
licious nodes. We provide a heuristic trust threshold for
selective trust based fusion, below which a neighbors adver-
tised report may be disregarded. We compare the results of
the trust based fusion with blind fusion to establish the effec-
tiveness of the proposed fusion scheme. We find that spatial
distribution of malicious nodes may play a role which may
cause exceptions for a few nodes. To validate the exceptions
we analyze the performance both from individual node as
well as overall network perspective, and show that most of
the discrepancies are caused by certain spatial distribution
of malicious nodes. We also find that at lower probabili-
ties of attack the contribution of a malicious node to the
entire network in cooperative sensing is more than the dam-
age done. Thus, including them for fusion does more good
than harm to the network overall. We also observe that be-
yond a critical probability of attack (0.40), the overall gain
in cooperation decreases if malicious nodes are included in
fusion.

The rest of the paper is organized as follows. Section 2
describes the system model and the assumptions. Section 3
discusses the proposed framework for monitoring cooper-
ation behavior, calculation of trust coefficient and subse-
quently proposes a trust based fusion scheme. Simulation
model and results are discussed in Section 4. Conclusions
are drawn in the last section.

2. SYSTEM MODEL
We assume all secondary nodes continuously undergo spec-

trum sensing to decide whether a channel is occupied by pri-
maries or not. Let us assume secondary node i constructs
its observed occupancy vector as: Bi

act = [d1, d2, · · · , dn],
where dk is 1 or 0 depending on whether the channel is oc-
cupied or unoccupied, and n is the number of channels being
monitored. Once this binary vector is created, a secondary
node would broadcast this information to its neighboring
nodes. Similarly, a secondary node would also hear broad-
cast messages (binary occupancy vectors) from its neighbors.
Based on the vectors a node receives, the node will employ a
fusion technique to obtain a better estimate about the spec-
trum usage that can significantly improve the performance of
spectrum sensing [1, 4]. Such cooperative sensing has other
benefits such as mitigating the shadowing and multi-path
effects.

We consider that the malicious nodes do not report their
occupancy vectors truthfully; rather they inject errors in
their occupancy vectors by flipping the bits in the vector.
Flipping 0 to 1 implies that the channel is occupied when in
reality it is unoccupied. Flipping 1 to 0 implies that an oc-
cupied channel is reported as unoccupied. We denote prob-
ability of attack Pattack, as the percentage of channels that
a malicious node changes from its actual observed vector.
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2.1 Assumptions
1. We consider an ad-hoc secondary network withN nodes

with γmal fraction of nodes being malicious; H is the set of
honest nodes and M malicious/dishonest nodes. We assume
η(M) < η(H), since in a realistic network, the number of
malicious nodes is less than number of regular honest nodes.
The secondary network has no dedicated central fusion cen-
ter or allocation authority, and each individual node fuses
the spectral sensing data it receives from other nodes from
which it can hear from and forms its opinion on the avail-
ability of spectrum.
2. The nodes are not aware of the geographical coordi-
nates of other nodes involved in cooperation. We assume
the transmit power level of all secondary nodes are same.
Knowledge of the transmitter output power, channel losses,
and antenna gains with the appropriate path loss model al-
lows us to find the distance between the two nodes using
Received Signal Strength through localization or lateration.
The location or identity awareness is not required. It pre-
vents the nodes lying about location, and also reduces main-
tenance overhead.
3. Unlike in [7], which discusses a more restrictive fusion
model (AND fusion rule), we use majority voting fusion
rule, which gives more flexibility towards errors committed
by nodes and/or malfunctioning nodes.
4. Each primary transmitter whether it chooses to transmit
or not, transmits only on one channel; so the channel asso-
ciated with a primary transmitter is known. The primary
transmitter that transmits on channel k, is referred as Tk,
and since it is fixed, its coordinates (xTk , yTk) are known to
the nodes.
5. We assume nodes use some interference aware channel
access framework, so that they do not interfere with other
secondary nodes who are using the same channels sensed as
unoccupied. Interference awareness is outside the scope of
this paper.
6. We consider that reporting of spectrum sensing data, take
place over noisy links, hence the observation and monitoring
processes under imperfect conditions.
7. We consider independent attacks and do not consider
collaborative Byzantine attacks. We do not delve into ratio-
nale of attacks. No matter what the motive is, we call them
malicious nodes.
8. The outcome of local sensing is raw energy values which
are converted into a binary vector of 0’s and 1’s, where 0 rep-
resents absence of primary and 1 represent primary’s pres-
ence.
9. The probability of false alarm is the probability that
a channel which is actually empty (H0) is erroneously de-
tected by a node to be occupied, and is denoted by Pf or
P (H1|H0). Similarly, the probability of missed detection is
the probability that a channel which is occupied (H1) is not
detected by a node and is denoted by Pm or P (H0|H1). It is
traditionally the channel between the primary and the CR
node. There is body work that deals with calculation of such
probabilities [5].

3. TRUST BASED FUSION MODELS
In this section we discuss gathering of trust evidence based

on unraveling anomalies in spectrum sensing data reported
by neighbors of a node in an ad hoc CR network. We pre-
dict the bounds of received power and use a normalization

Table 1: Notations
Symbol Meaning
Ni Neighbor set of node i
H Set of honest nodes
M Set of malicious nodes
γth Common threshold used to normalize power vectors
sTik

Dist. between node i and tower Tk for channel k
dk Binary Decision on a channel k, dk ∈ 0, 1
j Set of all neighbors of i, j ∈ Ni

P i Measured power vector on n channels at node i
Bi

act Actual binary occupancy vector formed at i

Bi
adv Advertised binary occupancy vector by node i

P ij
predict

Vector of power ranges for neighbor j predicted by i

Dj
i Binary occupancy of node j, predicted by i

dj
k|predict Predicted decision on any channel k, for Dj

p

(α, β,X)j Three tuple trust evidence

Ej
trusti

Reputation or trust of neighbor j calculated by node i

BF i
blind Fusion result at node i, when all j are included

TBF i Fusion result due to trust based selective inclusion of j

criterion to predict occupancy vector, which is then com-
pared with advertised vectors sent by neighbors j of node i.
This comparison is recorded as the trust evidence which is
then modeled into a numerical trust coefficient, reflecting the
trustworthiness of a neighbor. However observations might
be erroneous due to noise, and to certain extent anomalies
may be caused by unreliable channel conditions like noise
rather than malicious behavior. We provide two approaches
of computing fair trust coefficient to counter noise. Subse-
quently we propose a trust based filtered fusion scheme for
robust and secure cooperative spectrum sensing.

3.1 Bounds on Power Levels and Anomaly De-
tection

Suppose node i measures the power vector

P i = {γi
1, γ

i
2, · · · , γi

n},
where γi

k is the power received on channel k and n is the
number of channels. Each node i forms its binary vectorBi

act

=
[
di1, d

i
2, ....d

i
n

]
from it’s power vector P i by comparing

γi
k with threshold γth, where

dik

{
= 1 when γi

k ≥ γth
= 0 when γi

k < γth
(1)

Each node i, advertises a public binary vector Bi
adv.

Bi
adv

{
= Bi

act if node i ∈ H
�= Bi

act if node i ∈M
(2)

Just the way node i advertises its binary vector, it also hears
similar advertisement from its neighbors. For a neighboring
node j ∈ Ni, node i estimates its possible power vector us-
ing their mutual distance and received signal strength (RSS)
localization [14]. Though it is difficult for node i to accu-
rately predict the power vector of node j, nevertheless it
can always estimate the lower and upper bounds using RSS
models. Let us describe how node i estimates the upper and
lower bounds of power vector as P ij

predict.
Assuming transmit power of all nodes are same, node i

calculates the distance between the node j and itself when-
ever it receives a signal (vector) from it as sij . Based on
the distance sij , node j may be anywhere on the circle with
node i at the center. We draw a straight line from the cen-
ter of the circle to the primary transmitter Tk located at
(xTk , yTk ) as shown in Fig. 1. Under ideal conditions, the
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Figure 1: Calculation of Max and Min RSS range
on channel k of neighbor node j

RSS due to Tk will be maximum on the circle that is clos-
est to Tk, i.e., on point P and minimum at a point Q that
is farthest from Tk. We denote the power levels at these
two locations as [γj

k]high and [γj
k]low at distances smink

j
and

smaxk
j
, respectively. For all locations on the circle, the RSS

on channel k varies between [γj
k]high and [γj

k]low.
Using commonly used model for RSS [6], we get

γi
k = Pk × A2

sαik
; (3)

where A = frequency constant, α is path loss factor, sik is
the distance between Tk and node i, and Pk is the transmit
power of Tk. We get the bounds as:

[γj
k]high = Pk × A2

sα
mink

j

; (4)

[γj
k]high = Pk × A2

sα
maxk

j

; (5)

Now we divide Eqn. 3 with Eqn. 4 and Eqn. 5. Since sik,
smink

j
and γi

k are known to node i, it is easy to find [γj
k]high

and [γj
k]low. Node j is somewhere on the circular locus. Now

the predicted power vector of node j is a 2-tuple vector

P ij
predict =

[
([γj

1]low, [γ
j
1 ]high), · · · , ([γj

n]low, [γ
j
n]high)

]
.

With the estimated power vector being known, the inference
drawn by a node j on channel k is,

djk|infer =

⎧⎨
⎩

0 if both [γj
k]low and [γj

k]high ≤ γth;

1 if both [γj
k]low and [γj

k]high ≥ γth;
X otherwise

(6)

Eqn. 6 is the normalization criterion. When both the lower
and higher predicted power levels on a channel are less than
γth, it implies that channel i is not being used by any pri-
mary transmitter, i.e., channel is unoccupied. So in this
case djk|infer is inferred as 0. Similarly, if both the lower and

higher predicted power levels are greater than γth, d
j
k|infer is

inferred as 1. Such inference can be drawn for the above two
scenarios. However, no inference can be drawn when one of
[γj

k]low and [γj
k]high is above γth and the other is below γth.

We denote such cases as X. Now node i compares Dj
i =

[dj1|infer , ......, d
j
n|infer ] with received Bj

adv = [dj1, ....d
j
n] on

corresponding channels k for matches and mismatches.

A match occurs when on channel k, djk|infer = djk. A

mismatch occurs if djk|infer �= djk. If djk|infer = X no infer-
ence can be drawn. For each neighbor j, node i computes the
number of matches, mismatches, and no inference with Bj

adv

as αj , βj , Xj respectively. This forms the trust evidence.

3.2 Instantaneous Fair Trust Model
The logic behind the trust evidence is out of all inferences

(0,1) advertised on all channels how many have achieved
trustworthiness (α), how many inferences have not succeeded
to achieve trust (β), and how many inferences are undecided.
To account for the X channels where no inference could be
drawn, we consider them in the ratio of α : β. Thus the

proportion of matches is updated as αj +
Xj

αj+βj × αj . But

this does not account for the proportion that may be lost
due to mismatches caused due to channel noise. Thus we
provide a fair instantaneous trust coefficient.

To account for channel noise, shadowing and fading, we
define probability of false alarm as Pf = P (H1|H0), proba-
bility of missed detection as Pm = P (H0|H1), and channel
error probability due to noise as Pe.
Pf and Pm probabilities due to sensing inaccuracies when
nodes are not able to detect the presence or absence of pri-
mary transmission. Thus, local sensed reports are modified.
Moreover, when local sensed reports are advertised to the
neighbors, they may be altered due to noise between the
relevant CR nodes. Considering the channel error proba-
bility we define modified false alarm probability for node j
vector at the node i as

P
′
fe = (1− Pf ).Pe + Pf .(1− Pe)

and modified missed detection probability, as

P
′
me = (1− Pm).Pe + Pm.(1− Pe)

P
′
fe is the probability that a 0 in node j′s advertised vector

will reach as 1 at node i, irrespective of malicious behavior

of node j. Similarly, P
′
me is the probability that a 1 in node

j′s advertised vector will reach as 0 at node i, in spite of any
malicious behavior. We need to discount these mismatches
caused by Pm, Pf and Pe to achieve a fair trust coefficient.
Let the actual number of 0′s and 1′s in ideal case for any re-

ceived vector is x
idealj
0 and x

idealj
1 respectively. Let the num-

ber of 0′s and 1′s in received vector from j be H(0)received

and H(1)received, which are known. Therefore,

x
idealj
0 − P

′
fe × x

idealj
0 = H(0)received (7)

x
idealj
1 − P

′
me × x

idealj
1 = H(1)received (8)

From Eqn. 7 and Eqn. 8, we find x
idealj
0 and x

idealj
1 , the

other parameters being known. The total mismatch from
ideal scenario caused due to channel uncertainty is

P
′
fe × x

idealj
0 + P

′
me × x

idealj
1 = αj

noise (9)

where αj
noise accounts for the mismatches that occur due to

unreliable channels conditions. Thus we need to add it to
the matches to account for fairness. So the modified instan-
taneous fair trust coefficient is

Ej
FairTrusti

=
αj + (

Xj

αj+βj × αj) + αj
noise

αj + βj +Xj
(10)

where 0 < Ej
FairTrusti

< 1.
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3.3 Cumulative Fair Trust Model
The instantaneous trust model considers only one obser-

vation, i.e., α and β are computed based on transmission on
a single time slot while taking care of mismatches caused by
noise. Another approach is a continuous trust model where
it is possible to make multiple observations of neighbors be-
fore concluding a trust. To minimize such effects of channel
noise that may prevail over multiple slots, we define cumula-
tive trust model where the computation of the trust is done
over multiple time slots. Doing so, allows to discount (but
not eliminate) some errors that occur randomly on certain
slots. We observe the transmissions over a decision window
of l time slots and do an averaging of the parameters. Thus,
αj , βj , and Xj computed over l time slots are given as:

αl
j =

1

l

l∑
k=1

αk
j (11)

βl
j =

1

l

l∑
k=1

βk
j (12)

Xl
j =

1

l

l∑
k=1

Xk
j (13)

where αk
j , β

k
j , X

k
j are the observed value at the kth time

slot of a particular window. Using these at the end of l slots
the trust at a particular decision window u is given by

Elu

window
j
i
=

αl
j × (1 +

Xl
j

αl
j+βl

j

)

αl
j + βl

j +Xl
j

(14)

where u, is the current window number. Though the trust
is computed over l time slots, it is necessary to consider a
longer history of a node to truly capture its trustworthiness.
To do so, we propose an exponential weighted moving aver-
age. If is the trust value computed in the current decision
window, u, then the moving average is updated as:

Elu

FairTrust
j
i
← k1(E

lu−1

FairTrust
j
i
) + k2(E

lu

window
j
i
) (15)

where 0 < k1, k2 < 1 and k1+k2 = 1. Such moving averages
takes into consideration longer histories but with exponen-
tially decaying weights for old observations. To illustrate,
let us consider a node that experienced bad channel condi-
tions during an entire decision window, and it’s trust may
be reduced. However, when the channel conditions change
it gets a chance to redeem its trust. Similarly, a malicious
node that gathers trust by being honest at the beginning
will loose its trust quickly when it decides to launch attacks.

3.4 Trust based Fusion Scheme
Using the computed trust coefficients, we study the perfor-

mance of two fusion schemes: blind fusion and trust-based
filtered fusion. We justify the effectiveness of the trust based
fusion in Section 4.

3.4.1 Blind Fusion
For blind fusion, node i considers all its neighbors to

be honest and includes Bj
adv from all its neighbors along

with its own Bi
act. We formally define Blind Fusion as

BF i
blind = ∇[Bj

adv ⊕ Bi
act], j ∈ Ni where ∇ is the opera-

tor for majority voting rule. Majority voting is a popular
fusion rule where final fused inference on a channel is based

on what at least half the neighboring nodes advertise with
all the nodes treated equally. ⊕ is the operator for combi-
nation.

3.4.2 Trust-Based Fusion (TBF)
We propose a fusion scheme whereby we only consider

neighboring nodes whose Ej
trusti

is higher than some trust
threshold, Γopt. (Later in Section 4, we show how to find the
optimal threshold). Thus, for trust-based fusion, node i only
considers those neighbors whose Ej

trusti
≥ Γopt. In effect,

the fusion is done with information from trusted nodes only.

IfEj
trusti

{ ≥ Γopt Node j is trusted ;
< Γopt Node j is not trusted

(16)

We define Trust based Fusion as TBF i = ∇[TFSi ⊕Bi
act],

where TFSi is the trusted fusion set of binary vectors ac-
cumulated by node i using Eqn. 16, which includes Bj

adv of
trusted nodes only.
Although the nodes are not aware of the ideal scenario, we
are aware of what would have been the ideal fusion result,
which is the case when for all node j ∈ Ni, B

j
act = Bj

adv, so

we define Ideal Fusion for node i, BF i
ideal = ∇[Bj

act⊕Bi
act].

This is later used for comparing the performance of various
fusion schemes by measuring deviation from ideal result.

3.4.3 Weighted Trust Based Fusion (WTBF)
We consider another possible alternative fusion scheme

where the final decision on a channel is based on the binary
decision’s trusts associated with it. Here we consider all
broadcasts, but weigh their binary vectors in proportion to
their trust values. Unlike traditional voting, this fusion con-
siders weights of the nodes that broadcast 1 for a channel and
those broadcast that broadcast 0 for the same channel. As
the weighing factor we simply consider their trust values. On
channel k, for all nodes that have advertised 1 on channel k,
their trusts are added. Let this be Ej

trust(dk = 1), and simi-
larly for those who advertised 0 be Ej

trust(dk = 0). Thus, the
WTBF result is 1 if

∑
Ej

trust(dk = 1) >
∑

Ej
trust(dk = 0)

and 0 if
∑

Ej
trust(dk = 1) <

∑
Ej

trust(dk = 0), ∀k = (1, n).
This scheme unlike TBF is not exclusionary but gives weight
to the most trusted decision. However our performance eval-
uation shows that trust based fusion (TBF) is the more ro-
bust, reliable and effective scheme than weighted trust fu-
sion. Weighted trust fusion may work well but not under all
conditions. We justify this in Section 4.

4. SIMULATION MODEL AND
PERFORMANCE ANALYSIS

In this section, we study the performance of our proposed
technique and its effectiveness in capturing cooperation mis-
behavior. First, we provide results for the average trust val-
ues of different nodes, which reflect that our scheme is suc-
cessful in capturing cooperation misbehavior through trust
coefficients. Results show that the malicious nodes have a
trust distribution significantly lower than honest nodes. Sec-
ondly, we show how we use the trust based fusion scheme
to filter out advertised data from malicious nodes. We show
trust based fusion is robust than blind fusion. We also show
that Weighted Trust based Fusion is not a stable alternative
for robust fusion.

In the simulation, we evaluate performance metrics, by
a parameter ‘Mismatch’. For a particular case of fusion
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scheme, Mismatch is the difference between BF i
ideal and

the corresponding fusion schemes TBF and WTBF. Mis-
match reflects deviation of Cooperative sensing accuracy of
nodes in coexistence with malicious nodes. We compare the
‘Mismatch’ for each fusion scheme to show that trust based
fusion works better than blind fusion, and also show the
impact of the spatial orientation of nodes hampering coop-
eration gain. We compare average mismatch of blind fusion
and trust based fusion from individual node’s perspective
and overall network’s perspective.

4.1 Simulation Set up
For simulation, we consider a network of 60x60m grid,

with 30 randomly scattered nodes out of which 9 nodes are
programmed to be malicious. All nodes continuously scan 50
channels, record the signal power on each of them, and create
the binary occupancy vector which they then advertise. The
malicious nodes attack (i.e., change the bits in the channel
occupancy vector) with a probability between 0.2 and 0.8. It
is to be noted that high probability of attack facilitates easy
detection and at the same time very low attack probability
do not significantly effect the network. The probabilities Pf ,
Pm and Pe are assumed as 0.03,0.002 and 0.01 respectively.
Transmission range of all nodes is considered to be 20m,
thus a node hears broadcasts from all the nodes that are in
a 20m radius.

4.2 Trust Measurement
In Fig. 2, we see the difference in trust distribution be-

tween honest and malicious nodes for both low intensity and
high intensity of attack. We measure the average trust of
each node as evaluated by all its other neighboring nodes.
We observe that malicious nodes have significantly low trust
values than the honest nodes for both the low attack prob-
ability in Fig. 2(a) and high attack probability in Fig. 2(b).
In Fig. 3, we plot all malicious node’s trust against various
probabilities of attack and observe that the node’s trust is
lowered as it becomes more aggressive in attacks i.e., the
more it attacks the more damage it does to its trustwor-
thiness. We observe that the average trust for set of honest
nodes does not change given all other Pf , Pe, and Pm remain
constant, but average trust for malicious nodes decreases
with increase in probability of attack.
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Figure 2: Trust distribution at: (a) Probability of
attack = 0.3; (b) Probability of attack = 0.7

4.3 Cumulative Trust Measurement
From Fig. 4, we observe the distribution of trust values for

cumulative trust model for particular node (Node 2). The
sample values are plotted alongside the cumulative exponen-
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Figure 3: Trusts of malicious nodes at various prob-
ability of attack

tially weighted moving average trust coefficient. We observe
that as the noise and bad channel conditions may effect the
instantaneous sample values, the cumulative model is able
to redeem its trust value after a certain length of time. For
simulation we used weight factors k1 = 0.8 and k2 = 0.2.
We consider a length of 240 windows.
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Figure 4: Trust distribution of node 2: Instanta-
neous and cumulative values

4.4 Heuristic Trust Threshold for Trust-based
Fusion

From Fig. 5, we obtain value of trust threshold Γopt for
trust based fusion. We perform a trust based fusion with Γ
ranging from 0.2 to 0.8 and compare how ‘mismatch’ varies
from ideal results. Fig. 5, shows that for very low values of
threshold there are more mismatches since most of the mali-
cious nodes are included for the purpose of fusion. However,
as we increase the threshold, malicious nodes start getting
discarded and mismatch decreases. When the threshold is
very high (above 0.6), the mismatch again increases as high
threshold means we are also discarding the honest nodes
along with the malicious nodes. Since our goal is to min-
imize the total average mismatch from ideal scenario, we
notice a range of threshold values from 0.45 to 0.52, where
the average mismatch is the least for different probabilities
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of attack. From individual node’s perspective, the idea is to
exclude maximum number of malicious nodes from fusion.
We choose Γopt as 0.52, because we can exclude malicious
nodes even at lower probabilities of attack. This is evident
from Fig. 3 containing average trusts for malicious nodes for
different probabilities of attack. Now observe the horizontal
lines for the two possible candidates of trust threshold. If
Γopt was 0.45, the nodes are successful in excluding major-
ity of malicious nodes from fusion for higher probabilities
of attack but not for lower probabilities of attack because
malicious nodes have lower trust values when they attack
less aggressively. If we take 0.52 as threshold, then more
malicious nodes are excluded even for lower probability of
attack. However, if we take Γopt = 0.45, we allow a few
malicious nodes in fusion for lower probability of attack.
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Figure 5: Choosing threshold for trust based fusion

4.5 Performance of Trust based Fusion and
Weighted Trust Fusion

Using Γopt = 0.52, we compare the trust-based fusion
with blind fusion and weighted trust fusion for ‘mismatch’ as
shown in Fig 6. The graph clearly shows that for most nodes,
mismatches are far less when trust based fusion is used.
However there are a few nodes which are exceptions, e.g.,
node numbers 7, 27 and 28. This reveals an interesting effect
of spatial orientations which explains why these nodes are
exceptions (discussed in the next subsection). Since Fig. 6
can be misleading for a few nodes we provide Fig. 7 for total
number of mismatches for all nodes that shows the efficiency
of trust based fusion. Also from Fig. 8(a) and Fig. 8(b), it is
evident that by using trust based fusion the nodes 10 and 23
have mismatches significantly less than if they had blindly
fused occupancy data without trust filtration. To measure
what percentage of nodes are benefited using our framework
of TBF , even at high probabilities of attack of 0.8, 90%
of the nodes have average mismatches less than 8 shown in
Fig. 9(a). The results reflect the effectiveness of trust based
fusion over blind fusion.
We also notice that weighted trust based fusion(WTBF), al-
though works well for a fraction of individual nodes is not a
stable for other nodes and the network overall. This is be-
cause, often malicious nodes with same false advertisement,
their trusts add up and vote out the true advertisement.
Hence we do not compare WTBF in other graphs. We are
better off using TBF which follows a selective filter based
policy.
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Figure 8: Blind fusion vs. trust based fusion: (a)
Performance of node 10; (b) Performance of node
23
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4.6 Effect of Spatial Orientation on Coopera-
tion Gain

The relative position of an honest node with respect to
malicious nodes plays an important role in determining the
outcome of the fusion process. If an honest node has many
malicious nodes in its neighborhood, then trust based fusion
scheme will not yield good estimates for the channel occu-
pancy; as a matter of fact no fusion scheme will be effective.
However this does not mean that these nodes will not ob-
tain a channel to use, but the gain from cooperative sensing
is diminished and such nodes are better off using their own
binary vector. In such cases filtering out neighbors will not
help to reach anywhere close to ideal result. For e.g., node
7 had only 2 neighbors both being malicious. Similarly for
Node 27, two out of three neighbors were malicious. So being
in close proximity of many malicious nodes negates the ben-
efit from cooperation. Recall that difference between ideal
result and result of applied fusion scheme is an indirect mea-
sure of cooperation gain in spectrum sensing accuracy. Out
of the 125 mismatches in Fig. 7 for Trust Based Fusion, more
than half the mismatches are due to nodes 7 and 27. So, in
particular we see when the number of honest neighbors is
less than or equal to malicious neighbors, there is a rapid
loss in cooperation gain for any fusion scheme. This is the
reason for the few exceptions in Fig. 6.
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Figure 9: (a) The CDF at probability of attack =
0.8 (b) Average mismatch for the entire network vs.
probability of attack

4.7 Blind and Trust based Fusion: Overall net-
work perspective

An interesting comparison for average mismatch for all
nodes in the network, reveal how overall cooperative sensing
accuracies are effected. We see that for very lower proba-
bilities of attack, if all nodes still allow advertisement from
those malicious nodes in the fusion, the average mismatch is
slightly less than trust based filtered fusion although the dif-
ference is not much as shown in Fig. 9(b). This is because,
lower attack probability means malicious nodes choose to
attack less channels and cooperate on more channels. That
is why the damage done to the network is less if those nodes
are considered in fusion. However as the malicious nodes
increase their attack probability, we see marked increase in
mismatch for blindly fused data, while the mismatch for
trust based fusion scheme is much less. In our simulation
(Fig 9(b)) we see for Pattack > 0.40, the trust based fusion
has very low overall mismatch from ideal, while for blind fu-
sion the mismatches continually increases. So from malicious
nodes perspective, they will have to employ a probability of
attack to cause significant harm to the entire network.

5. CONCLUSIONS
We proposed a framework for evaluating trust through

monitoring false advertisements of neighboring nodes, and a
trust based fusion schema to address the problem of coex-
istence with malicious nodes in an ad-hoc CR network. We
provided an optimal trust threshold that may be used by
each node to disregard advertisements of possible malicious
node from the fusion. We are able to identify malicious
nodes even at lower probabilities of attack. We also ob-
served that for lower probability of attack, malicious nodes
may also contribute to cooperation. So from malicious nodes
perspective in order to significantly harm the network, it has
to employ a probability of attack higher than critical prob-
ability of attack 0.40.
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