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Abstract—Road traffic congestion affects not only the commute
delay but also a city’s overall social, economic, and environmental
growth. Existing approaches for road congestion mitigation
primarily adopt a reactive approach by detecting congestion after
it occurs and recommending alternate routes to the vehicles,
which fails to prevent congestion cascading. In contrast, we pro-
pose a pervasive platform called ProCon that proactively infers
the driving micro-behaviors that can contribute to congestion
formation and assist the drivers in avoiding such maneuvers
in real time during the navigation. Thorough evaluations over
multiple real-life and simulated datasets indicate that ProCon can
reduce congestion for more than 60% of the scenarios on average
while significantly reducing the travel time of the vehicles.

Index Terms—Road congestion, Proactive mitigation, Driving
behavior, Pervasive recommendation

I. INTRODUCTION

Road congestion impacts navigation as well as the overall
socio-economic-environmental growth of a region. According
to the congestion reports published by TomTom1, the top-
3 traffic-congested megacities (Lima in Peru, Bengaluru and
Mumbai in India) spent an additional 24 minutes on average in
traveling 10 km in 2022. Existing approaches of road naviga-
tion primarily use a reactive approach, i.e., predict congestion
based on the vehicle density and associated events, like the
average speed of the cars, nature of the road, demographic fac-
tors, etc. Although such approaches may work intermittently
and help for long-term policy planning with reduced recurring
traffic congestion, they do not explicitly consider congestion
prevention as an objective during pervasive navigation.

One weakness of reactive congestion measures is that they
overlook the ripple effects of individual driving actions that
impact the traffic even at a city scale. While traffic con-
gestion can be recurring and local (like congestion near a
shopping/event complex daily during busy hours), it triggers a
cascading traffic pattern that influences several non-recurring
congestion hotspots [1] across the city depending on the
perceptual bias [2] of the driver (habitual perception based on
standard driving practices) towards the regional driving micro-
cultures. For example, a driver might look for an alternate
exit while observing a lane block ahead. However, suppose
multiple drivers follow the same alternate exit based on

1https://www.tomtom.com/traffic-index/ranking/?population=
MEGA(Accessed: May 9, 2024)
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Fig. 1: Congestion cascading due to map-navigated rerouting
(Data from Chicago, USA on September 6, 2023)

their local perception. In that case, the alternate route might
get congested, and the impact of congestion thus gradually
propagates to other parts of the city (see Fig. 1). Coupled
with such perceptual bias, several anomalous driving behaviors
originating from specific driving micro-cultures, such as side-
slipping to avoid snows or potholes on the road, frequent
overtaking on the lanes, etc., influence the traffic cascading
pattern that leads to eventual road congestion [3]. Considering
the situation discussed above, this paper tackles the following
research problem. Considering the runtime driving micro-
behavior, can a navigation app recommend maneuvers that
proactively prevent traffic congestion cascading while not
significantly impacting travel time or distance?
Challenges. Although existing works [4]–[7] have developed
models to correlate historical data and run-time information to
predict future traffic density, there are challenges in proactively
adjusting real-time navigation to prevent congestion.
1 Traffic density alone can not predict congestion well

ahead before it starts occurring. Traffic density enables us
to understand congestion only after it starts to form and does
not allow preventive measures. In contrast, tracking changes
in the driving micro-behavior along with context information



enables an a priori understanding of the traffic cascading that
may lead to eventual congestion.

2 Traffic congestion does not linearly depend on the driving
micro-behavior. Anomalous maneuvers by a few vehicles do
not always lead to traffic congestion. Instead, there is a
complex interplay among the maneuvers taken by different
vehicles coupled with the road condition, lane type, and latent
factors to determine whether the scenario may lead to traffic
congestion soon. Further, using such information in real-time
to predict congestion before it actually happens is a challenge.

3 Proactive congestion mitigation demands highly dynamic
route planning. Unlike reactive approaches where the vehicles
are rerouted after observing traffic congestion on one path,
navigation planning to proactively mitigate the congestion
cascading needs frequent runtime analysis of the contextual
information that depends on several highly dynamic latent
factors (e.g., weather, road, lighting conditions, etc.).

Our contributions. To address the above challenges, this
paper proposes ProCon, a multimodal domain adaptive model
that pervasively learns the contextual impact of different driv-
ing maneuvers on the possibility of local congestion formation
and proactively alerts the driver to avoid the maneuvers having
a high probability of forming congestion. ProCon runs locally
on a smartphone as a standalone wrapper on top of the
navigation app and uses the IMU and GPS data coupled
with the associated map information. In cotrast to the existing
works, our contributions in this paper are as follows.

1 Characterize driving behavior leading to congestion. We
conduct a small-scale study using digital map data (e.g.,
Google Maps, TomTom) and naturalistic driving trajectory
dataset inD [8] and the largest driving dataset Berkeley Deep
Drive (BDD) [9] to understand the aspects of driving behavior
and spatio-temporal road properties that lead to varying levels
of congestion (e.g., low, moderate, high).

2 Self-Explainable on-device model for proactive congestion
prediction. The crux of ProCon leverages (a) vehicle trajectory
and interactions with peer vehicles and (b) spatio-temporal
road properties to detect its correlation with driving behavior.
Following this, we design a model that understands the tempo-
ral dependency among different types of driving behavior with
dynamic road properties. The model-identified explanations
responsible for congestion help us predict congestion ahead
of time and accordingly recommend driving micro-behaviors
that help in macro-scale traffic management (like dynamic
rerouting to prevent congestion cascading).

3 Evaluation with real and simulated datasets. We use two
naturalistic driving datasets [8], [10] along with runtime sim-
ulation through Anylogic 8.8.4 simulator [11] to evaluate Pro-
Con comprising more than 10 various road intersections with
70 driving hours. Thorough experiments show that ProCon can
prevent 50–70% of the cascading congestion scenarios when
the congestion possibility is predicted 30 minutes ahead of
time. Further, it results in a 10–40% reduction in the travel
time with around 0–6% increase in the travel distance.

II. A SMALL-SCALE STUDY WITH REAL DATASETS

Existing studies have shown that recurring congestion is pre-
dictable based on the demographic and spatio-temporal geo-
patterns of the traffic movements [12]; however, it influences
several non-recurring congestion-cascades across the city de-
pending on the run-time traffic behavior and the local driving
micro-cultures [13]. To understand whether such congestion
cascading can be prevented by intelligently controlling the
driving behavior during run-time, we conduct a small-scale
pilot study to answer the following research questions. a
Does a particular vehicle maneuver always trigger the conges-
tion cascading or do different maneuvers trigger congestion
cascading at different times and places? b Does rerouting
with “Lane Change” maneuver trigger congestion cascading
in neighborhood roads? c Do all the vehicles exhibit a similar
behavior during congestion cascading?

We conduct the study using TomTom and Google Maps
data, and two publicly available driving datasets, namely
Berkeley Deep Drive (BDD) [9] and inD [8]. The BDD is
the largest driving dataset collected by 10k drivers voluntarily
in the USA and Israel, covering 18 cities. The multimodal data
covers IMU, GPS and video recording as the driver view. The
German dataset inD covers 4 road junctions with IMU and
GPS data from each vehicle along with the drone-recorded
videos. We utilize two cities from the two datasets, Aachen,
Germany & Boston, USA, for the following study.

A. Impact of Vehicle Maneuvers on Congestion Formation

We start by analyzing how different vehicle maneuvers
influence congestion formation over two cities with different
driving micro-cultures – Aachen, Germany, and Boston, USA.
We focus on two different maneuvers – “Lane Change” (LC)
and “Abrupt Stop” (AS), extracted using existing studies [14],
under two different scenarios – low vehicle density (LD,
< 80 vehicles/km) and high vehicle density (HD, > 200
vehicles/km). Notably, Aachen observes more frequent lane
changes, while Boston observes frequent abrupt stops and
acceleration/deceleration on the road. Fig. 2(a) indicates that
Aachen observes a higher probability of congestion during
high and low vehicle densities in the presence of frequent
lane changes. On the contrary, we observe that abrupt stops
influence congestion in Boston with a higher probability for
both low as well as high vehicle densities. Such observations
indicate that different vehicle maneuvers influence congestion
differently, which depends on the driving micro-cultures of a
locality (like lane changes are more common in Aachen, while
abrupt stops are common in Boston) and their spatio-temporal
impacts on the overall traffic movements.

B. Congestion Propagation due to Frequent Rerouting

To observe how frequent rerouting coupled with the Lane
Change maneuver influences congestion cascading, we con-
sider the scenario shown in Fig. 1. As we have seen earlier,
the congestion cascades from R1 to R2 and then persists in
R2 even when it gets mitigated from R1 (after 17:00 hours).
To explore this further, we observe that while R1 is a straight
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Fig. 2: (a) Probability of congestion under different maneuvers,
(b) Congestion propagation due to frequent rerouting.

0 200 400 600 800 1000
Time (in s)

(1.5

(1.0

(0.5

0.0

0.5

1.0

Ac
ce
le
ra
ti
 n

 A
l 
ng

 Y
-a
xi
s 
(i
n 
m
/s

2 )

Truck
Car 1

Car 2
Car 3

Bicycle
Congestion Start

Abrupt Stop
Lane Change

(a) Acceleration pattern

0 200 400 600 800 1000
Time (in s)

2

4

6

8

10

12

Sp
ee

d 
(i
n 
m
/s
)

Truck
Car 1

Car 2
Car 3

Bicycle
Congestion Start

Abrupt Stop
Lane Change

(b) Speed pattern

Fig. 3: Impact of congestion on driving behavior.

drive, R2 has multiple lanes. Fig. 2(b) depicts the two routes’
congestion information and the vehicle density on a temporal
scale with their traffic speed as reported by the Google Maps
API. The figure indicates that the vehicle density increased
non-linearly in R2. As R2 already has more provision for
changing lanes, vehicles start to take alternate lanes to avoid
traffic. However, the lane change behavior further influenced
the average speed of the cars on R2. The figure indicates that
although R2 is a multi-lane highway and the vehicle density on
that route was close to R1 at around 17:45 hours, it observed
more congestion and lower vehicle speed than R1. The figure
indicates that to mitigate congestion in the current route
(R1), diverting traffic to other routes (R2) uncontrollably may
propagate congestion more rapidly to the neighborhood roads.
This also establishes a concrete base that further performing
some maneuvers (say, lane change) to avoid traffic can worsen
the congestion over time.

C. Change in Driving Behavior During Congestion

Here, we examine a non-congestion-to-congestion scenario
using the data from Frankenberg, Germany, (on August 20,
2018, weekday) during the early evening hours. To check
whether all types of vehicles behave similarly in terms of taken
maneuvers, we pick 5 vehicles (3 cars, 1 truck, and 1 bicycle),
which were peer vehicles in one directional traffic, and their
trajectories are plotted in Fig. 3(a,b) using acceleration along
Y-axis and speed values. We consider two maneuvers as used
earlier – abrupt stop (black circle) and lane change (red
triangle). Initially, the road had no congestion, and all the
vehicles were moving with almost constant speeds (close
to zero acceleration) as depicted in Fig. 3(b). However, at
around 400 seconds, we observe some mild congestion on
the road, and the vehicles start maneuvering abruptly. From
Fig. 3(a), we observe that while car 2 decelerated smoothly,
car 1 stopped abruptly (at 650 seconds) and further changed
the lane (at 870 seconds). Notably, car 3 also changed the lane

almost simultaneously (at 880 seconds), possibly replicating
the behavior of car 1. However, the truck moved slowly and did
not show any abrupt behavior. At the same time, the bicycle
tried to avoid traffic by frequent lane changes followed by an
abrupt stop with sharp deceleration. We observe a gradually
increased congestion on that road between 600 seconds to
900 seconds, primarily due to the abrupt maneuvers taken by
some vehicles, which got further contaminated to the following
vehicles. Therefore, such diversity in vehicle behavior may
trigger abrupt maneuvers, worsening the congestion scenario.
These observations indicate that it is crucial to proactively
inform or alert the drivers not to take abrupt maneuvers that
can lead to traffic congestion.

III. PROBLEM DEFINITION AND SYSTEM OVERVIEW

Consider a set of vehicles A traveling on a road segment
e having a set of spatio-temporal road properties w ∈W . The
vehicles perform a set of maneuvers Mt′ at time window t′.
Further, we consider that maneuvers of one vehicle a ∈ A may
impact maneuvers of its peer vehicle a′ ∈ A, denoted as impact
propagation (Ia,a′ ). The objective of this paper is to measure
the influence of Ia,a′ for each pair of peer vehicles {a, a′} ∈ A
on congestion (Ct) formation at a later time window t (t′ ≤ t).
We consider four types of congestion scenarios during time-
window t, Ct ∈ [0,3] signifying {no, low, moderate, high}
congestion, respectively. We aim to solve the congestion
prediction Ct as a function F ∶R→ (Mt′ ,w(e),Ia,a′), where
R represents the derived context in the form of a sequence
of maneuvers {m1,m2,⋯,mn} ∣mi ∈M and road properties
{w1,w2,⋯,wn} ∣ wi ∈W .
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A. System Overview

We propose a system architecture comprising two modules:
Feature Engineering and Data Annotation (see Fig. 4(a)) and
Identify Maneuvers Leading Congestion (see Fig. 4(b)).

1) Feature Engineering: ProCon relies on each vehicle’s
timestamped IMU and GPS data to infer per-vehicle maneu-
vers and map-extracted data to infer the road properties. We
use existing literature [15] to extract 4 different maneuvers:
“Stop”, “Turn”, “Lane Change”, and “Jerkiness”, from each
vehicle using IMU/GPS data. We further extract vehicle dy-
namics, such as “Relative Distance” and “Relative Speed”
between two consecutive vehicles using their position (GPS)
information, which helps us to encode impact propagation
Ia,a′ among the nearby vehicles during model development.

To extract road features w, we design a map-extracting
framework to infer 9 spatio-temporal features using Google
Maps, TomTom, and OpenStreet Maps API, utilizing GPS
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data. The features such as “Road Segment Distance”, “Traffic
Density”, “Traffic Speed”, “Speed Limit”, “Presence of Mul-
timodal Transportation”, “Weather Type”, “Type of Road”,
“#Point of Interest (Police Station, Hospital, Bank, ATM,
Supermarket, Post Office, Institute)”, “#Connected Neighbor-
hood Road Segment”, are extracted in a recurring manner
for consecutive time-stamps (t) where t is a 20-second time
window. Note that, whenever a vehicle performs a maneuver,
its probability is calculated based on previously performed
maneuver. Basically, we utilize the Markov property to com-
pute the maneuver chain N denoting transitions of maneuvers
performed by a set of vehicles. Next, we utilize these road
properties to comprise a [1 × 9]-dimensional feature vector
w to fuse with the computed maneuver chain N . Some of
the road properties (like “#Point of Interest” & “#Connected
Neighborhood Road Segments”) are encoded according to their
actual values, whereas the rest are encoded as a discrete value
∈ [0,3] where 0 represents normal situations and a higher value
represents poor situations.

2) Annotating Ground-Truth: We use the video data cap-
tured using a camera-equipped drone to annotate the ground-
truth congestion level and vehicle maneuvers. Notably, this
annotated data is required only to develop the model and
not required during the run-time. We annotate the congestion
level as a human-annotated label, Cgt , with the help of 3
volunteers by showing the video recordings. Each recording
is annotated for 60 seconds window, and a label ∈ [0,3]
is assigned denoting {“No”, “Low”, “Moderate”, “High”}
congestion, respectively. As the congestion level observed over
the video may vary with human perception, we fetch the traffic
speed for the corresponding trips as {“Fast”, “Moderate”,
“Slow”, “Stop and Go”} mapping to [0,3] from HERE Maps2

to cross-verify the sanity of the human-annotated ground-truth.
Now, to distinguish the events that occurred ahead of dif-

ferent congestion levels, we instruct the volunteers to observe
closely and figure out the maneuvers (say, over-speeding,
turns, etc.) along with road demography and note them at
every 60 seconds time window. We do not restrict them by
providing any a priori information about maneuvers or road
properties set to avoid bias and rely only on visual observation.
These ground-truth observations are kept in Lg , maintaining
their sequencing order for model construction and validation.

3) Identifying Maneuvers Leading to Congestion: We di-
vide each trip into continuous non-overlapping time windows
of size δ where a sequence of driving behavior with its conges-
tion label helps to construct a model with input features as a
time-series data, as shown in Fig. 4(b). Following this, ProCon
proceeds to analyze the influence of certain maneuvers that
have a higher probability of congestion formation (higher Cpt
levels) using a self-explanatory method, called the historical
model. During run-time execution, ProCon intelligently fuse
information independently obtained from each vehicle (say,
ego vehicle) along with the live available information on a
standard map-based navigation service to predict the possibil-

2https://www.here.com/ (Accessed: May 9, 2024)
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Fig. 5: Working principle of ProCon.

ity of congestion if the ego vehicle takes a specific maneuver,
by harvesting the historical model. We also incorporate model
retraining after carefully validating the unforeseen data for
adapting the model for changing traffic scenarios.

IV. MODEL DEVELOPMENT

ProCon leverages extracted features, viz., maneuver chain
N and road features w ∈ W . However, as these features
are in time-series format with variable lengths, capturing
their temporal dependencies in the feature space is essential.
Thus, we need a sequential model like a recurrent neural
network (RNN) to capture the sequence of maneuvers leading
to different congestion levels. We use an LSTM model with
retraining to overcome performance drops on non-IID data.
Additionally, we make the model self-explanatory to overcome
the non-interpretability of black-box models.

A. Training Phase

As the maneuvers involved in N can either be “safe”
or “risky” (denoted as anomaly x), depending on how well
it is performed, it can contribute differently to congestion.
Additionally, confidence in computing such an anomaly of the
maneuver will help us to build a robust model. As maneuvers
are the core component in constructing our model, leveraging
their computation quality (i.e., confidence) is necessary to
avoid false-positive derivation. Thus, we represent anomaly
type as a discrete variable x ∈ {−1,1} of maneuver m and
confidence of anomaly as a continuous variable y ∈ {0 − 1}.
Next, we adapt Dempster-Shafer (D-S) [16] theory to associate
both the confidence y and probability of performing m-th
maneuver to compute subjective probability. Following this,
the subjective probability is multiplied with x to associate
level of anomaly in the maneuver chainN . Then, we interleave
derived maneuver chain N with its corresponding road feature
vector w denoting road properties at each time-stamp t. This
interleaving process transforms a single scalar value from one
time-stamp into a l1 × (l2 + 1)-dimensional vector; the first
dimension l1 represents the length of the Markov chain while
the l2 dimension represents the associated road properties, and
the extra +1 dimension added represents the time-stamp. We
make l1 as variable length as within a time window number
of transitions between maneuvers can not be of fixed length.

1) Architecture considerations: Consequently, the resulting
input to our LSTM model for each sequence is a matrix of
size < (l1 × (l2 + 1)), (1 × 4) >, where 1 × 4 is the one-hot
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vector of the ground-truth congestion level Cgt as shown in
Fig. 5. Our model comprises one LSTM layer of 50 units as
the input layer, followed by two hidden layers as one LSTM
(50 units) and Dense layers (width as 16), as shown in Fig. 5.

Between the input and the two hidden layers, three dropout
layers of 20% (first two) and 10% are added, respectively, to
prevent over-fitting, as it will exclude a few random inputs
before feeding it to the next layer. The output from the last
dropout layer is finally fed to a dense layer of the same
dimension, i.e., a width of 4 as of the number of output labels
[0−3] with the softmax activation function. Softmax generates
a label-wise probability vector as a multinomial one, and the
label with the highest probability is chosen as the predicted
label Cpt . We use “tanh” activation function for the other layers,
as it works well with continuous input range values.

2) Loss function and optimization: As an optimizer, we
use Adam as it converges rapidly and faster to compute for
large datasets. For minimizing the loss between Cgt & Cpt , we
use Categorical Cross Entropy (CCE) as it works best with
multinomial representation of labels.

3) Handling class imbalance: Our training data has a class
imbalance known to drop the model performance. Typical
label balancing techniques like SMOTE oversample training
instances blindly without concisely selecting neighborhood
examples, which can also introduce noise, hence unsuitable
for our approach. As a solution, we use the “Hard Negative
Mining” technique to boost the performance of our model.
We refer to the training instances with low frequencies for
specific labels and more entropy in the feature space as “Hard
to Classify” examples. We carefully choose them during model
training by inspecting the loss function as well as their distri-
bution in training data and increase their weight by b% accord-
ing to the distance between the ground-truth and the predicted
congestion labels as b = ∣Cgt −C

p
t ∣×10∣b ∈ [10%−30%]. Hence,

the model weights are readjusted accordingly to weighted
training samples to learn the best parameters.

Now, at the end of the training, the model can predict Cpt ;
we are interested in identifying the sequences of maneuvers
and road properties responsible for such prediction. Hence, we
extend the model by making it interpretable as follows.

4) Generating interpretable sequences Lp: ProCon ascer-
tains the influence of specific maneuvers from the Markov
chain and road properties on the predictions from the LSTM
model. For this, we employ LIME (Local Interpretable Model-
agnostic Explanations) method [17], which is a model-
agnostic technique to faithfully explain any classifier’s pre-
dictions by approximating them locally with an interpretable
model. For each test sequence, LIME highlights the features
(comprising the maneuvers and road properties) that played
a pivotal role in the model’s prediction. Thus, the significant
transitions are identified, and following this, the corresponding
maneuvers and road properties are decoded at given times-
tamps, forming a sequence Lp. These sequences are stored in
an online dictionary D (see Fig. 5) where congestion type Cpt
is the key and a set of sequences comprising maneuvers and
road properties are populated as a value against the key. This

way, major possible sequences responsible for a typical type
of congestion will be captured, which can be further used in
runtime for proactive prediction. For example, if the predicted
congestion type is 2 denoting “Moderate” congestion, and a
set of sequences are derived as {“Sudden U-turn → Abrupt
Deceleration by Peer Vehicles given Evening Time, Presence
of Trucks”, “Abrupt Stop → Lane Change → Relative Distance
Variation given Morning Time, Presence of Pedestrians, High
Traffic Density”,⋯}, it represents the possible causes behind
the “Moderate Congestion” key. We use D during the runtime.

B. Opportunistic (re)Training

As traffic congestion has regional influence, the feature
distribution might vary for an unseen region. Therefore, new
sequences of maneuvers and road properties can always arrive
at runtime. To make our model generalized enough to work
and adapt itself at runtime, we incorporate transfer learning
architecture [18]. Hence, we freeze all the layers except the last
three to save on computational resources. The frozen layers
will be used as a bootstrapped model in a new region, whereas,
the last three will adjust their weight parameters to learn the
differences in data distribution so that the loss function CCE
incurs minimal loss.

While running the model from an edge device deployed
on a vehicle, we continuously sense the GPS data to infer a
significant change (increase) ϵ in the traffic density in ∆t time
interval. At that point, the collected IMU and GPS data are
fed into our system to infer the congestion level Cpt , and its
corresponding sequence of maneuvers and road properties are
generated subsequently. This ensures our system can predict
congestion proactively while saving computational resources.
To identify new data points that the model needs to learn, we
need both the ground-truth congestion labels Cgt and observed
data along with identification of erroneous prediction from the
model. We leverage the fact that most sequences are derived
during the training phase. Hence, for the sample test data, if
we get a new sequence and the predicted Cpt also does not
exist in D, we consider the sample as a retraining candidate.

However, we cannot use human annotators to collect Cgt dur-
ing the runtime as it can be biased or even malefic. Therefore,
we use a decision-tree model trained on several road properties
{traffic density, vehicle speed, time of the day, speed limit} to
annotate Cgt at runtime. This validation property is legit as it
lies on popular digital maps inference techniques3. Following
this, the model gets retrained and accordingly adapts itself.

C. Runtime Inference

Finally, given the road properties, our method periodically
predicts the congestion level Cpt at time tnow + t, where tnow
is the current time. Suppose the predicted congestion level is
higher than the current one (as returned by the Map API). In
that case, ProCon checks D to figure out the chains of maneu-
vers Lp, which can be responsible for an increasing congestion
level. ProCon recommends that drivers avoid such maneuvers

3https://googleblog.blogspot.com/2009/08/bright-side-of-sitting-in-traffic.
html (Accessed: May 9, 2024)
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Fig. 6: Experimental setup with different datasets.

until the next prediction window. We analyze the impact of t
during the evaluation. Notably, although avoiding maneuvers is
recommended at a micro-level during the runtime, they capture
a wide range of fine-grained recommendations and help to
manage macro-scale traffic. For example, if turning towards
an exit may reroute the vehicle, resulting in a high congestion
probability at that route, ProCon recommends not to take the
turn at that exit, thus even balancing traffic across different
routes at a macro-scale.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate how well ProCon can proac-
tively identify the variation in maneuvers and road properties
to alert drivers about possible congestion formation. Notably,
evaluating ProCon from real-time deployments is not feasible;
hence, we use a simulator “AnyLogic” [11] to emulate driving
behavior with a naturalistic driving environment along with
two other real-world datasets as follows (see Figs. 6(a), (b)).

A. Experimental Setup

We train ProCon on a computing system with Intel(R)
Core(TM) i7−1255U processor with 1.70 GHz speed, 16 GB
primary memory, and 500 GB disk space. We use Python 3.8.3
with Tensorflow 2.13.0v running in the background to imple-
ment our model architecture. We use 1500 training samples
from the inD dataset running over 200 epochs consuming 30%
CPU, 3 GB of GPU, and 13.64% primary memory, running
over ≈ 400 seconds. For the retraining architecture, we use
exiD [10], which is a highway dataset extracted from German
Autobahns, comprising 16 hours of driving data with 3 types
of traffic participants as “Car”, “Truck” & “Van”, respectively.
As proposed in §III-A3, the maneuver’s distribution from the
annotated sequences Lg , responsible for congestion, differs
significantly for inD and exiD datasets, respectively. For top-3
maneuvers “Stop”, “Lane Change”, and “Relative Speed”, the
distribution for inD and exiD datasets vary as {(32%, 16.4%),
(12.3%, 17.2%), (8.2%, 22.8%)}, respectively. Certain differ-
ences in maneuvers for the two datasets, such as stop pattern,
relative distance in city-street vs highway or others, further
highlight the importance of the retraining architecture. We
consider δ = 60 seconds, ϵ = 20%, and ∆t = 10 minutes as

the hyperparameters of ProCon. Our model takes 0.5 seconds
with 10% CPU, 1 GB of GPU, and 12% primary memory
consumption to run on each trip with retraining if required,
thus making the system suitable to deploy at run-time.

For the simulation setup to test ProCon at runtime, we use
Anylogic 8.8.4 simulator running over 20.0.2 JDK environ-
ment to simulate 3 urban traffic scenarios based on traffic
intersections, comprising “City Street”, “Highway”, “Parking
Lot”, and a variety of traffic participants (see Fig. 6(c)). Traffic
congestion due to cascading majorly originates from traffic
intersections, in terms of longer waiting time, increased traffic
density, etc., and propagates through connecting roads, eventu-
ally paralyzing the neighborhood road network [1]. As traffic
intersections are a significant source of traffic phenomena such
as congestion, we focus on emulating different intersection
structures to achieve diversity and increased complexity. The
urban cities with varying demography are emulated as follows
- (i) A simple highway junction with 2 forward and 2 backward
lanes with one-way traffic and traffic participants are cars,
trucks, and vans, respectively (Town 1), (ii) a 5-way city road
intersection with 2 lanes on each road and one-way traffic with
traffic participants are pedestrians, cars, buses, respectively
(Town 2) & (iii) a complex city with two 4-way road junctions
with utmost 6 lanes and 2-way traffic, 2 flyovers and a variety
of traffic participants as buses, lorries, trucks, cars, vans (Town
3). As these types of road intersections are mostly observed
throughout different nations, the broad characteristics during
proactive congestion predictions will be captured.

B. Baseline Implementation

(1) We use a rule-based supervised Random Forest (RF) model
with 50 decision trees, which branches out to an unlimited
depth for training. Although RF model predictions can be
explained using its feature importance map, we use LIME
only to generate the sequences responsible for congestion.
Using this baseline, we can compare both congestion levels
and sequences of maneuvers.
(2) We implement DTW [19] that identifies anomalous tra-
jectory of vehicles by adapting the model for congestion
scenarios using inD [8] using hierarchical clustering. It cap-
tures individual vehicles’ spatial & temporal dynamics and
labels trajectories anomalous or normal. We compare how
well ProCon can infer maneuvers responsible for congestion
in contrast to the anomalous maneuvers inferred by DTW.
(3) We adapt an existing work SPAT [7] by incorporating
W from current and all the neighborhood road segments
to understand the spatial correlation between road segments
on congestion formation and propagation from neighborhood
roads. We leverage our model only with variable length input
dimension, as W from each road is fed into a time-series
format with the corresponding road’s congestion level.

C. System Improvement

We start by inspecting the improvement in terms of conges-
tion reduction if the vehicles are alerted to avoid maneuvers
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Fig. 7: Overall system performance.

based on congestion level prediction. We compute the im-
provement as C

p
t w−Cpt w/o
Cpt w/o , where Cpt w & Cpt w/o are predicted

congestion with and without the driving alerts, respectively,
and t is varied between [30− 5] minutes indicating how early
we want to predict the congestion levels. For each town in the
simulation, we run the experiments for 60 − 90 minutes with
a minimum of 10 trips and report how system improvement
varies with respect to t. As depicted in Fig. 7(a), Town 1
gets the highest improvement with a mean 67% if vehicles
are alerted 30 minutes ahead. For Town 2 & 3, we get 56% &
45% mean improvement in avoiding congestion. However, the
improvement is not worthwhile as the alert is generated later,
i.e., 15 minutes ahead, even in Town 1 with a simple vehicle
movement pattern. Vehicles get enough time to rectify their
maneuvers for the former cases ([30− 20] minutes); however,
a delayed prediction fails to avoid congestion cascading, thus
exhibiting less improvements in avoiding congestion.

D. Impact of ProCon on Vehicles’ Travel Time and Distance

While vehicles adhere to the recommended maneuvers to
avoid congestion as prescribed by ProCon, it is vital to
analyze if they need to travel more distance or time to reach
the destination. Therefore, we measure such impact as rise
or drop in the travel time and distance for each town’s
collective set of vehicles. We compare two scenarios, i.e.,
when vehicles travel based on Google map recommendation
and when ProCon recommends suitable maneuvers to vehicles
upon sensing congestion and report such impact in Fig. 7(b)
as the percentage of rise/drop in travel distance/time. We
observe vehicles have to travel a minimal distance (a mean of
3%) while they follow ProCon’s recommendation. However,
we observe that the travel time reduces significantly when
ProCon’s recommendations are used. Notably, the proactive
approach not only reduces congestion on the road but also
helps the vehicles to dynamically choose a route at runtime
that reduces their overall travel times.
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Fig. 8: ProCon performance in congestion analysis.

E. Performance of Congestion Analysis

ProCon’s congestion analysis is evaluated from two aspects
- (a) congestion prediction, (b) congestion reasoning inference.
Congestion Prediction: We achieve a micro-F1 score [20]
of 86% for 5-fold cross-validation and 83% for the test set
for congestion prediction for inD dataset with a 70:15:15
train:validation:test split, as shown in Fig. 8(a). However,
while training the data with inD and testing over exiD dataset
and simulation, we achieve 80% and 75% micro-F1 score,
respectively. Further, we observe that ProCon performs at
least 25% better than the two other baselines for congestion
prediction, over all the three datasets. RF+LIME could not
adapt itself with the shift in data distribution while treating
each data sample as an independent instance. In contrary, SPAT
uses a rich set of road and traffic properties; so, it could predict
the congestion instances that are due to narrow roads or high
volume of traffics. However, it failed to predict the congestion
cascading due to the influence of the driving behavior.
Congestion Reasoning Inference: For measuring the accu-
racy as how correctly the interpretable sequences are gen-
erated, we use Jaccard Similarity [21] measure between the
generated Lp and annotated Lg sequences as J = Lg∩Lp

Lg∪Lp .
Fig. 8(b) shows the results for all the three datasets and also
compare them against two baselines (§V-B). We obtain J as
80%, 75% & 71% for inD & exiD datasets and simulation, re-
spectively. But, for the two baselines, especially for RF+LIME,
J is worse due to temporal independence. In contrast, DTW
performs quite well for the inD dataset (71%) as it considers
the temporal ordering of vehicle trajectory information but
fails for other datasets due to non-adapting model architec-
ture. Also, the high values of J for all the datasets denote
a decent overlapping between human-annotated and model-
generated inference for predicting congestion, thus making
ProCon robust enough.

F. Ablation Study
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Fig. 9: Ablation study.

Next, we inspect how ProCon
performs while excluding two
feature categories, i.e., maneuver
chain (N ) and weight of the road
(W), one at a time. We call these
two variations as ProCon−man
where we exclude N and Pro-
Con−road where we exclude W .
For both the variants, we report

micro-F1 score and Jaccard similarity for the test set of the
inD dataset in Fig. 9. Although ablating both the features one
at a time drops both congestion prediction and its reasoning
inference quite poorly, still the drop is severe for ProCon−man.
The analysis indicates that both the feature categories have
their importance on the model performance.

VI. RELATED WORK

Recent works on estimating traffic congestion analysis [4],
[5] focus on crowd propagation patterns from diverse traffic
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network properties, e.g., spatial relation between roads. Mul-
tiple sources responsible for congestion are studied in [6],
showing influences of different zone types, sudden accidents,
etc. Utilizing traffic volume, road connectivity, etc., [22] ex-
trapolate upcoming traffic congestion by anticipating a sudden
rise in traffic density. Additionally, [23] has developed a model
to predict the congestion propagation time. However, all such
approaches require a diverse set of information, sometimes in
a centralized manner and modification of road architecture,
optimizing traffic rules/signs, and changing traffic policies.

In contrast, different modalities such as spatial correlation
among road segments [7], GPS probes and crowd-sourced
tweet information [24], vehicle density, road capacity, vehicle
speeds, etc. are fused for predicting causes of congestion.
However, this happens reactively in retrospect and works
well for recurring congestion scenarios. However, attributing
driving behaviors to non-recurrent congestion [25] is very
challenging because they tend to have random patterns [26]
as shown by SOTA methods. Already existing works [27]
show a strong relation between dynamic traffic behavior and
congestion. Therefore, understanding the pattern of individual
driving behaviors in the context of the surrounding road
network and its effect on neighboring vehicles will establish a
causal relationship between maneuvers and eventual conges-
tion. Learning this relationship will allow us to prevent ma-
neuvers leading to non-recurring congestion. ProCon develops
a system in this direction by mitigating the limitations of the
existing approaches leveraging such causal relationships.

VII. CONCLUSION

This study developed a multimodal domain adaptive model
called ProCon that proactively predicts the possibility of
congestion using the contextual impact of different driving
maneuvers and surrounding road information. Subsequently,
drivers are alerted to avoid such maneuvers to prevent con-
gestion formation during navigation. Alerting the drivers well
ahead of time and adhering to our recommendations shows the
credibility and efficiency of ProCon by reducing congestion
for most traffic scenarios. Although dependency on driving
maneuvers and road properties are well-captured, the effect
of some unanticipated events, e.g., sudden natural or man-
made disasters (say, thunderstorms or mob violence), are not
cosidered in the current design of the model. Analyzing such
information needs additional modalities, such as fusing social
network information (say, tweets); we look forward to them
as potential future directions.
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