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Abstract—Trust in Smart Home (SH) Internet of Things (IoT)
technologies is a primary concern for consumers, which is
preventing the widespread adoption of smart home services.
Additionally, the variety of IoT devices and cyber attacks make
it hard to build a generic attack detection framework for smart
home IoT devices. In this paper, we present a roadmap towards
building a unified approach towards establishing trust scores
as an indicator of the security status of an IoT device in
a smart home that works across multiple attacks and device
types/protocols. Specifically, we first introduce artificial reasoning
inspired evidence collection approach by introducing a small set
of factors that are affected significantly if a smart home IoT
device is under attack. Thereafter, we propose an explainable
trust scoring model that maps the device level evidence into
trust scores in a way that produces lower trust scores when
devices are under attack. Specifically, the trust model involves an
Augmented Bayesian Belief based Model embedded with novel
non-linear weighing functions; explicitly designed to account for
the severity of the attack, probabilistic discounting of parts of the
evidence caused by benign changes, thus explaining our success.
For evaluation of the framework, we use two real datasets that
contain a variety of actual cyber-attacks and benign traffic from
seven different smart home IoT devices. Our evaluation seeks
to investigate the generality of our framework across multiple
datasets, with various classes of IoT devices and cyber attacks.

Index Terms—Internet-of-Things, Trust, Security, Smart Home,
Artificial Intelligence based Security, Machine Learning

I. INTRODUCTION

Smart Homes are environments offering services to home
inhabitants via a network of communication-enabled IoT de-
vices that contain embedded software. IoT devices communi-
cate with each other/remote service providers and often make
decisions without human intervention. However, the concept of
a smart home is a cornerstone of smart connected communities.
Smart home exposes the most private and vulnerable of our
personal spaces to the internet, which is known to be vulnerable
to several classes of cyber-attacks [1].

Nonetheless, traditional cyber threats at best had economic
impacts on businesses and breaches of personal data at rest.
In contrast, in the evolving paradigm of smart home IoT,
the cyber attacks have an immediate civilian impact that
is riskier. Moreover, there are new IoT technology-specific
security challenges that need to be handled explicitly.
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Since IoT devices have constrained memory and com-
putational resources, strong on-device security solutions are
barely possible without significantly reducing their usability.
Additionally, there is a lack of vendor motivation to implement
security schemes in IoT products [2] due to cost versus utility
trade-offs, while other vendors do not implement too much
security to improve latency and quality of service and reduce
costs [3]. For example, after analysis of smart home data,
researchers in [2], [3] found only one IoT device that uses
secure encrypted SMTP protocol, and only ’some’ IoT devices
use secure HTTP port (HTTPS 443), and most other IoT
devices are using insecure HTTP over port 80. We did not
find any device use the MQTT secure port 8883 [4]. There
is a lack of standards in IoT protocols and port mappings that
makes it hard to have an established rule or specification based
attack detection that is common to all IoT devices.

A. Challenges and Motivation

Prior work on IoT device attacks can be broadly classified
into the following categories network-level data flow [5] ,
device-specific fingerprinting [6], attack specific [7], network
segmentation [8], localization approaches [9], IoT network
or device components classification [11], embedded security
architecture [12], or adopt known machine learning techniques
for anomaly detection [10]. Localization based approaches only
take care of physical proximity issue that is more related to au-
thentication but does not detect attacks on already authenticated
devices. Similarly, network segmentation involves splitting
the smart home network channel to various sub-networks to
mitigate the movement of attacks, but do not detect them
actively. Device-specific approaches do not scale due to the
large heterogeneity of device types that can be found in smart
home IoT markets. Similarly, attack specific approaches need
separate solutions for each cyber attack. Therefore, the number
of solutions for providing a secure smart home increases.

Therefore, there is a need for a more unified solution that is
not attack or device-specific, but that which generalizes across
most attack types, devices, and services in smart home IoT.

B. Contributions of this Work

In this paper, we propose a ‘unified’ approach towards
establishing trust scores as a reliable indicator of the security
status of IoT devices in a smart home. Our framework contains



a series of modules: (a) service level access rules, (b) evidence
collection via proposed unified factors, (c) trust scoring mod-
ule. Specifically, our service access rule mechanism takes a
service-level view, establishing baseline access rules of autho-
rized communication flows from IoT applications. Thereafter,
our evidence collection module proposes a unified set of novel
factors that are affected significantly if a smart home IoT
device is under attack while provisioning for benign changes in
network behavior. Such a body of evidence, carefully collected
over time, serve as inputs to the trust scoring module. Finally,
the trust scoring module maps the device-specific evidence
(observations) into trust scores, such that it produces lower trust
scores when devices are under attack. Specifically, we propose
a Bayesian Belief based Model augmented with novel non-
linear weighing and activation functions, designed specifically
for our problem. The weighing functions contain embeddings
of certain explainable factors and are designed such that
the severity of the attack, probabilistic discounting of parts
of the evidence caused by benign changes are appropriately
embedded in the scoring module; that explains our success
under attacks while preventing false alarms.

For the evaluation of our framework, we use two different
datasets containing various actual cyber attacks and benign
behaviors for various IoT device types. Our evaluation seeks
to investigate the generality of our framework across multiple
datasets, devices, and attacks, compared to existing solutions
that treat each of these aspects in silos. The remaining paper
is organized as follows: Section II system model, Section
III threat model, Section IV proposed framework, Section V,
experimental results, and conclusion.

II. SMART HOME IOT SYSTEM MODEL

This section introduces several pieces of network compo-
nents that help us understand the smart home network architec-
ture, as shown Fig. 1. Such components include (1) IoT devices
(low computation devices), (2) non-IoT (high computation)
devices, (3) IoT hub devices, (4) smart home gateway (edge/fog
node), and the (5) cloud gateway (cloud node).

A. Device Types

A smart home (SH) contains various types of IP enabled
devices. It is important to differentiate between IoT devices
and non-IoT devices, as shown in Fig. 1. Based on the
computational ability, an SH can have low computation power
(IoT) and high computation power (non-IoT) IP devices.

Figure 1: Smart Home Network Architecture

Low computation IP Devices (IoT): An IoT device is an IP-
enabled device (e.g., smart camera) that has limited computa-
tional abilities compared to laptops/smartphones/tablets, and
offers a small set of services to the smart home (SH) owner
(e.g., smart surveillance). Each IoT device has an API (or
simply app.), that enables it to offer corresponding SH services.
The service is offered to the SH owner when an IoT device’s
corresponding app. connects to specific servers (on the rest of
the internet/within the LAN) on which IoT service providers
host their services. Thus, there is a mapping between an IoT
device apps and services.

High computation IP devices (non-IoT): These are devices
that may host apps/APIs that allow the use of IoT services
offered by IoT devices. Examples of such high computation
IP devices include smartphones, tablets, laptops. These devices
typically install many apps and software on their OS. All other
sensors and actuators that are not enabled by an IP address,
but collect data and perform actions, are not considered as IoT
devices. The security of such devices is beyond our scope.
Smart Home Gateway (SHG) and FIoT: Each smart home has
a gateway router (SHG), that connects the IoT devices to
the rest of the internet. This SHG supports services such as
Network Address Translation (NAT), Software Defined Net-
working (SDN), and can also host middleware services using
a Raspberry-Pi micro-controller. Our proposed trust model
is deployed on the smart home gateway router (SHG) as a
FIoT middleware. All smart home services are managed and
controlled by the edge/Fog Internet of Things Middleware
(FIoT) that is within the home network. Thus, FIoT will be
able to monitor SH network activity originating from a given
smart home.

B. Smart Home Operations

Let each IoT device be denoted by i ∈ {1, 2, .., I}, where
I is the total number of IoT devices in the smart home. Each
such IoT device, provides a set of services with the help of one
(or more) apps. The set of services is represented by the set
S(i) ∈ {1, · · · , k, · · · ,K(i)}, and the set of apps is represented
by A(i) ∈ {1, · · · , j, · · · , N (i)

j }, where k and j denote any
given service and an app respectively, while K(i) and N

(i)
j

are total number of services and apps offered by the i-th IoT
device, respectively. In most cases, IoT devices have a single
app that provides multiple services, but occasionally it might
contain multiple apps. Therefore, the set of services offered by

a home is
I⋃
i=1

S(i).

Scope of Our work: We make the following assumptions
for our work: 1). The use of a cellular network for any
communication directly from IoT devices is beyond the scope
of our work. We only consider the smart home network,
which communicates through the WiFi or wired LAN that is
managed and controlled by the FIoT middleware hosted on
SH Gateway. This paper only intends to detect misbehavior by
smart home IoT device applications connect via a smart home



WiFi network that uses a central gateway router. 2) Our scope
does not include the detection of the data leakage caused by
the non-IoT devices/applications of the smart homeowner.

III. THREAT MODEL

We characterize the threat model by various attack types,
strengths, and strategies:

Direct Attacks: In the direct attack in SH, the attacker flood
victim that could be within/outside the SH network from a
compromised IoT device. The direct attack types included in
our labeled attack dataset include well-known attacks such as
Fraggle, Ping flood, and TCP SYN [10], [15].

Reflection Attacks: the SH reflection attack, the attacker uses
a spoofed IP (SH IoT device IP) for attacking victims; in this
way, the attacker uses SH IoT devise as a weapon for targeting
the victim. Types of Reflection attacks include:

(i) Custom Malware Campaigns: These are malicious cam-
paigns, where software designed to disrupt IoT device oper-
ations, usually used to create a Distributed Denial of Service
(DDoS) attack. In many instances, such malwares are known
to show movement and grow their attacks from one to more
SH IoT devices and services, taking down a large section
of important network entities. In this work, our experiments
contain data from the malwares Hide and Seek, Muhstik, Torii,
the most advanced botnet malware, according to Avast security
researcher, that can attack many device architectures.

(ii) SMURF: it is a network attack where the attacker floods
the SH router with spoofed ICMP traffic via sending a request
to IoT devices with a spoofed source IP of the victim server.
Thus, the device will reply to the targeted victim IP. The
attacker’s goal is to disturb the victim’s server operations. Such
attack behavior is to use the SH IoT device as a weapon for
targeting victim servers and is relates to the number of packets
being sent per time interval.

(iii) SSDP reflection: it is a malware app running on smart
home IoT devices by using the Simple Service Discovery
Protocol (SSDP) used to discover IoT devices in SH. It also
uses Universal Plug-n-Play (UPnP) port forwarding to allow
a direct attack on IoT devices by an external attacker [15].
Mainly, the SSDP and UPnP port forwarding are conventional
in SH network because some IoT devices support peer to peer
applications. The adversary uses the SSDP protocol to discover
the devices and services in SH without explicit configuration
using SSDP vulnerabilities.

(iv) SNMP reflection: During an SNMP reflection attack, the
adversary sends out a large number of SNMP queries with a
spoofed IP address (of victim’s IP) to smart home IoT devices,
that in turn reply to that victim IP instead of the attacker
IP. The attack volume grows as the number of compromised
smart home IoT devices (that continue to reply to the victim)
increases, the victim becomes crippled, due to the huge volume
of SNMP responses.

Co-Domain DDoS and Leakage: This kind of attack takes
advantage of the IP/port forwarding feature that is argued

as necessary to support QoS guarantees by ensuring server
availability and load balancing. Therefore, a designated server
may forward IoT device requests to other servers in the
same network/cloud domain or third party providers. In such
an instance, the IoT device gets a response/requests from
a different server other than the typical server of the IoT
provider. Normally, such occurrences are less during benign
conditions; however, increased frequency and volume of such
events should indicate suspicion. This is because many servers
belonging to the business rivals/competitors/adversaries may be
co-located in the same network/cloud domain as the designated
server for that service. Taking a completely conservative ap-
proach of treating every such instance as suspicious will either
increase false alarms, reducing the efficiency of IoT services.

Attack Strength Variation: IoT devices have a limited pro-
cessing capability for network traffic. Therefore, if the reflec-
tion attack is too high in volume, the device may stop working
altogether. Intelligent attacks would like to keep compromised
devices still operational to allow launching attacks on other
machines. In such cases, the attacker may keep traffic rates
low because it wants to conceal the attack’s effect or if its real
target is not the IoT service provider.

In another attack, the attacker may be willing to make the
IoT device less or not functional, and thus keeps traffic rate
medium or high accordingly. Thus, traffic volumes, even for
the same attack type, vary according to the goals or motivations
of adversaries who are difficult to predict. To embed this, we
parameterize the attack volume by varying attack strengths
in our simulated dataset. From the real dataset obtained
from [10], [19], we used three different attack strengths per
attack: (i) high attack traffic rate, which generates 100 packets
per second (pps), (ii) medium attack traffic rate, generate 10
pps, (iii) low attack traffic rate that generates 1 pps.

IV. PROPOSED FRAMEWORK

Our proposed framework will be deployed as a framework in
the FIoT, which inspects and manages data plane traffic flow (e.
g., recording source and destination IPs:port mappings) to/from
all SH IoT devices. Our framework has three main phases:
(a) Access Control Policy Engine (b) Evidence Collection via
Unified Factors, (c) Trust Scoring Model.

The Access Control Policy engine sets baseline rules of
benign access for the apps of each IoT device. Thereafter, based
on which parts of traffic flow attributes align with the service
level access control policy, we propose a set of unified factors
that remain largely unaffected under legitimate benign changes
but show variations under attacks. These sets of factors produce
a set of features per device as a body of evidence that serves
as an input to our proposed trust scoring model. This evidence
collection phase partly uses the ACL to compare network traffic
attributes captured at the FIoT, although there are non-ACL
aspects of evidence collection. Our trust scoring model is an
artificial intelligence inspired approach that maps evidence into



trust scores, such that devices under attacks show lower scores
compared to when they are not attacked.

A. Service Access Rule Policy

Typically, an access control policy engine sets static and
dynamic access rules (known as Access Control List (ACL))
for devices explicitly registered with the FIoT. The decision on
whether a device should have authorized access to a service is
contextually related to the functionality.

While IoT devices exhibit heterogeneity, the number of
services they offer is limited. The Manufacturer Usage De-
scription (MUD) is a novel IETF specification that offers
suggestions on the expected behavior of an IoT device con-
textually related to the services it offers. Specifically, the key
idea of the MUD is to return a list of acceptable or expected
destination DNS names and destination port numbers, which
identifies one or more designated servers for the corresponding
service that an IoT device should offer as well as ancillary
end-points it might communicate to. Although not a security
specification itself, MUD profiles can be used as a first step
towards protection.

Note that what is included in the MUD specification, and
how security engineers/administrators interpret the MUD spec-
ification for access control are deciding aspects for achievable
security level. In a previous work [10], the idea of the access
control list was synonymous with the MUD profile. Their
idea of the MUD profile was to include all communication
patterns observed in the benign dataset. However, our treatment
of access rules is different from previous work, since we
differentiate between MUD and access compliance.

Our FIoT uses the DNS lookup to resolve the domain name
in the MUD to the IP address of the servers that are supposed to
offer the services. Thus, MUD can be used to point all IPs and
port no.s. that should be offering services or communicating
with that IoT device. Now, this most commonly includes the
IoT service provider and the hardware vendor. For specific IoT
devices like smart cameras and home assistants, they connect
to a lot of different servers other than the service provider, and
there the volume of packets exchanged is important. Hence,
our ACL design goal is to manage a table that sets baseline
benign access rules of each IoT device i’s app/firmware j both
the client-side (Source devices) and server (Destination) side
based on the above awareness.

1) Client Side: When an IoT device is first introduced in
SH, it has to be registered with the FIoT as an authenticated
device. The Source IP, Source MAC, and Source Port Number
is first added to the ACL. In this way, FIoT makes sure that
all active data flows at-least do not directly come from outside
the network and are registered IoT devices based on their IP
and MAC addresses.

2) Service Side: To find a mapping between IoT devices
and their corresponding designated server’s (that provide its
service) destination port numbers, destination IPs, and DNS

names, our FIoT queries the MUD server that returns a port-
based list that specifies those DNS names, and ports and
that should be typically accessed by a given service offered
by an IoT device. The MUD URLs are updated via various
IoT providers and manufacturers. While not all manufacturers
subscribe to the MUD specification, it is becoming common
over time, and thus will become a practical approach. The
information added to the ACL includes Destination Port No.,
Destination IP, Service ID, Service Type, as shown in Fig. 2.
Note that we only put the designated IoT service provider
server as a whitelist entry. Everything else is subject to different
levels of suspicion as detailed in the factors for evidence
collection. The reason for doing this is given below:

From studies of datasets, we found gray areas in IoT devices
such smart cameras (that use STUN protocol) or IoT home as-
sistants, which need to access random unauthenticated servers
that may or may not be servers in the same cloud domain, as
the IoT provider. Making them part of ACL may cause missed
detection of attacks. Additionally, we have found several cases
where IP and port forwarding causes the response to arrive
from a different server than the one listed on the MUD profile.
Thus, using the MUD directly as ACL will increase false
alarms. Additionally, packets are exchanged for maintenance
or monitoring purposes between the hardware manufacturer
and device, but such an occurrence is ‘infrequent’.

Our view of a service based ACL includes the following:
Each IoT device has a list of authorized IPs (corresponding
to servers that provide services related to that IoT device) for
each app(s) hosted by that device. For example, the services of
IoT device i is provided by using two apps j1 and j2 services
app, where both j1 and j2 allowed to have a conversation with
only specific devices and servers using IPs of these devices as
presented in Fig 2. The app/firmware is present in the form of
destination IP:port entry.

Figure 2: Smart Home access control policy
B. Evidence Collection Mechanism

A communication (packet exchange) not matching the ACL
does not automatically mean an attack and requires further
checks that we incorporate in our evidential model. Typically,
anything that does not match with an ACL is denied or deemed
suspicious, thus increasing false alarm rates, decreasing usabil-
ity. Our interpretation of service level access control is not
strictly binary due to the observed variations in IoT behaviors.
Similarly, interaction confirming the access control list does
not necessarily imply no attacks, which we also incorporate in
our evidential model. The above awareness is central to our



design of unified set of factors. From here, we will refer to the
packet exchange via the FIoT as an interaction.

Intuitively, the body of evidence should point towards de-
grees of positive, negative, possibly suspicious interactions
based on the body of evidence. The goal is to find (i) a method-
ology for labeling the interactions; (ii) corresponding mathe-
matical representations of these factors (known as features)
that captures the effects of attacks in a numerically quantifiable
way. Thus, features form the mathematically tractable evidence
that is driven by our proposed set of factors.

We propose the following set of factors: (1) Service Access
Uncertainty (2) Cumulative Volume of Uncertain Accesses (3)
Service Access Violation (4) Access Violation Diversity. Below
we describe each of these factors.

Figure 3: Evidence Collection
1) Service Access Uncertainty: Packet flows originating

from a device not matching the destination IP and Ports in the
ACL may or may not be necessarily due to an attack. Hence,
an intelligent framework should not blindly label this event as
a negative interaction. Not matching flows can be attributed to
benign ‘events’ in smart home IoT operations, such as:

(1) Hardware Vendor checks: Packets are sent from IoT
devices to servers that belong to their third-party vendors for
monitoring purposes (such as estimating the remaining life of
a device, etc.). (2) IP and port Forwarding: Sometimes, traffic
is redirected to a different IP or Port than the designated one in
the MUD, to guarantee quality of services (QoS) issues (e.g.,
too many requests concurrently can be forwarded) or in case
of server maintenance/upgrades/downtimes. In such cases, the
incoming response to an IoT device comes from a different
server but is usually within the same network/cloud domain as
the authorized server in the ACL. (3) use of STUN servers for
smart cameras and video streaming services: From our study
of smart home IoT datasets and previous literature, we found
most cameras use the UDP port 3478 for communicating with
various servers on a peer to peer mode to allow seamless access
to smart surveillance from anywhere. Such servers cannot be
learned and included from the MUD profile.

However, the above, if treated as a match in the ACL can
allow adversaries to create cyber attacks on servers within the
same cloud domain, third party vendors, or those that host
streaming. This gives the intuition that we should treat them
as between a match and mismatch(i.e., uncertain). Therefore,
we believe that once a packet exchange does not match the
baseline ACL, we first check if it might be due to any of the

above three reasons by the following procedure (summarized
in Fig. 3).

Our FIoT queries an IP lookup service Info-Sniper [24],
that provides meta information for any IP recorded in the
network traffic. This information includes: (i) Name of the
Owner/Provider (ii) Geolocation (iii) DNS name (iv) Time
Zone. Therefore, packets sent to a given destination IP is
checked by our FIoT to ascertain whether the Name of the
Owner and other attributes match with (1) any of the third
party vendor/manufacturer of the IoT device, (2) whether they
are within the same cloud/network domain name, or (3) use
the STUN protocol’s UDP port (if the device offers streaming
video services). To conclude, if a packet exchange does not
match the access control list, the FIoT checks for the above-
mentioned possibilities using the context information queried
from the Info-Sniper lookup service. If there is a match, we
label this packet flow as ‘uncertain.’ If not, then we would
label this packet exchange as a violation. Mathematically, we
denote an uncertain packet exchange for services as U (i)(s).
Number of Uncertain Packets Per Time Window: Therefore,
the corresponding feature that we keep track is the total
number of uncertain packet exchanges for a given device i
within a time window T , denoted as

η(i)u (T ) =
∑
T

U (i)(s) (1)

2) Cumulative Volume of Uncertain Accesses: One im-
portant fact about the events that cause uncertainty is that
when they are due to benign behavior, the packet volume
is low. Uncertain exchanges can be allowed a benefit of the
doubt (discounted) while calculating the trust scores of a
device. However, beyond a certain volume of total uncertain
exchanges, this situation should be viewed as suspicious, owing
to the infrequent pattern of such occurrences. This aspect is
later embedded using an uncertainty weight function, which is
a function of the total uncertain packet volume.

Cumulative Sum of Uncertain in a Time frame: At each
time window, we keep a cumulative sum of uncertain
interactions over a sliding frame of previous F time windows.

µu(T ) =

T∑
T−F

η(i)u (T ) (2)

3) Service Access Violation: The next factor for evidence
collection for potential malicious activity is the service access
violation. The main idea is that if an interaction from an IoT
device does not match the authorized access control list entries
and can neither be reasoned as uncertain, then this event of
access is treated as a violation represented as (V

(i)
j ), i.e., the

violation of app j that runs inside the device i.
Number of Violation Packets Per Time Window: In fact, for
that time window, T , the FIoT middleware calculates the total
number of access violation of K services by all the apps j1 to
jn running on IoT device (V (i)

j ).



η(i)v (T ) =
∑
T

V
(i)
j (3)

4) Access Violation Diversity: The Access Violation Di-
versity wd represents the extent of the cross-section of ser-
vices/servers being affected by a set of violations. Suppose
if one device is trying only to access one service ten times,
whereas another device is trying to access ten different unau-
thorized services, within the same time window T , the second
scenario is far more serious from a security perspective. Thus,
Access Violation Diversity is an important feature to determine
how the attacker is trying to grow its attack impact and
compromise more resources.
Number of Unique Services with violations η(i)vs (T ): The
number of unique services that experienced violations
recorded for a given IoT device i in a time window T .
Mathematically, it is represented by the following:

η(i)vs (T ) =

K∑
s=1

I(i, s) (4)

where, I(i, s) =

{
1, If i violated service s
0, Otherwise (5)

From the network traffic analysis of attacks (in a cross-
validation set), we found common links between different at-
tacks. Once our rule of matches, violation, and uncertainty are
in place, most real IoT cyberattacks either registers violation
with increased packet volumes, or an abnormal increase in the
cumulative volume of packet exchange to uncertain destina-
tions, as well as the relative volume of uncertain interactions.
In Fig 4, we show a summary of the observed relationship
between different types of reflection and direct attacks, and
the factors we put forward, which succinctly explains why our
factors work in terms of building the appropriate evidence.

Figure 4: Attack and Factor Mapping

C. Trust Scoring Model

Note that comparison of packet exchanges with ACL has
only three mutually exclusive outcomes, viz., matching, vio-
lation, and uncertain interaction. Notice that access violation
diversity and volume of uncertainty are not mutually exclusive
to violations and uncertain, so we ignore them for now. Based
on the evidence and the past evidence (if available), it is well
known that the posterior probability of observing a matching,

violation, or an uncertain interaction can be calculated using
posterior beliefs calculated using Bayesian inference where the
data is a multinomial distribution of the number of matches,
mismatches, and uncertainty.

Previous studies [20] have shown that for multinomially
distributed data Di with a non-informative prior, the poste-
rior probability belief θi is given by the mean of Dirichlet
distribution as the following:

f(θi|Di) =
Di + 1∑K
i=1Di +K

(6)

Where K is the total number of mutually exclusive cate-
gories in the evidence state space, i is the i-th category, and
Di is the frequency of occurrences of the i-th event in the data.
Degrees of Disbelief and Uncertainty Using the result in
Eqn. 6, we apply the known derivation provided in [21], to
find the degrees of disbelief and uncertainty as:

d(i) =
n
(i)
v + 1

N (i) + 3
u(i) =

n
(i)
u + 1

N (i) + 3
(7)

Embedding Access Violation Diversity: However, in Eqn. 7,
the d(i) only indicates the proportion of violations to the total
number of accesses. It does not provide any idea on the attack
scale or surface over which this proportion of violation was
recorded. If the same proportion of violation is recorded from
a unique number of devices, this is a more severe attack than
the same proportion of violation targeting only one device.
Therefore, we need to add weight to the d(i), which embeds
the importance of how many unique devices were involved in
the observed proportion of violations. This is similar to neural
learning approach. The question is what functional form should
describe this behavior. We use a modified softplus function
scaled between zero and one, by the following Eqn.

τ (i)v = log(aeηvs + 1) (8)

where 0 < τv < ∞. The above Eqn. is a modified softplus
function, with an augmented parameter a, which controls both
the steepness of the function and the initial bias (y-intercept) of
τv when ηvs = 0. Finally, we scale this to an interval between 0
and 1, giving the final equation for the weight of the violation.

wd = 1− e−|τv| (9)

Thus the combined disbelief mass wd.d(i). The product indi-
cates heightened suspicion that cyber attack is more serious, if
the surface is larger.
Embedding Cumulative Uncertain Volume: The intuition
behind the design of the weighing function of the raw, uncertain
probability mass is that the suspicion increases as more number
of uncertain interactions emerge. However, up to a certain
number of uncertain interactions should be discounted.

wu =
1

(1 +Ab.e−Bbµu)1/ν
(10)
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Figure 5: Functional Forms of wd and wu

where Ab > 0 is the initial bias, 0 < Bb < 1 is the growth rate
parameter, 0 < ν < 1 is the displacement parameter. The lag
phase in wu discounts the effect of the u, if the total cumulative
volume in the current frame is low indicating a benign scenario.
The parameter selection process is discussed later.
Expected Belief Score We envision trust score is a ‘comple-
ment of total disbelief,’ which includes the weighted violation
and weighted uncertainty masses that should contribute to
disbelief. This is mathematically represented as the following:

TR(i) = 1− wd.d− wu.u (11)

Plugging in wd, d, wu, u into Eqn. 11, we get TRi. Now we
know that in logistic regression, the response variable is linked
to the independent variable via a non-gaussian distribution and
therefore needs a link function. The typical link function for
a binary response variable (trusted or not trusted). Typically,
when the response is a binary, the following logit link function
is an appropriate link function that is given by:

E(i) = log

(
TR(i)

1− TR(i)

)
(12)

The Eqn. 12, facilitates trust scores that are linearly separa-
ble by a threshold that helps in classification between trusted
or non-trusted devices. The TR(i) is in the interval between
+∞ and −∞ that is scaled to the final trust score using 13.

The final trust score FRi is scaled from the real value plane
to an interval between [-1,+1] by the following equation, to
maintain convention of trust metrics representation:

FR(i) =



+

(
1− e−|E

i|

)
, if E(i) > 0

−

(
1− e−|E

i|

)
, if E(i) < 0

0, if E(i) = 0

(13)

The supervised approach is feasible if there is the availability
of labeled datasets of attacks and no attacks. In such cases, the
training set and cross-validation sets can be used to observe
the difference in trust scores of the two classes. The cross-
validation set includes a set of attack samples as well.

D. Parameter Learning

For optimal parameter selection of the trust model, one needs
to decide on an appropriate loss/error function. In this case,
our loss function e is the square difference of the sum of
compromised device trust scores and the sum trust scores of
honest device set, which will improve the classification. The
goal is to maximize the e which defined as:

e =
(∑

benign FR
(i)

H
−
∑
attack FR

(i)

M

)2
(14)

s.t. Ab > 0; 0 < Bb < 1; 0 < ν < 1; a > 0

where H and M are numbers of devices used in the cross-
validation process from the benign and attack sets, in our case,
H and M are equal since we have for each device an instance of
the benign in the training and instance of the attack in the cross-
validation set. The solution of Eqn. 14, can be done through
two alternatives: (a) Grid Search Approach (b) A Gradient
Descent based Approach. A gradient descent approach is more
computationally efficient for finding the optimal parameters
when the number of parameters is large, and the search space
in each parameter is huge.

However, for the gradient descent approach to be applicable,
the error/loss function needs to be convex, which is difficult
to guarantee. In our problem, the number of parameters is less
(i.e., 4), and two out of them have a limited search space.
Hence, for simplicity, we use a brute force grid search method
to find the parameter values that maximize the error function.
Thus, we get an approximate optimal parameter selection.

Our definition can be easily extended to gradient descent by
taking a negative logarithm of the above error function (which
is concave). However, the resulting approximate convex func-
tion may need further processing to ensure the differentiability
and existence of global minima. For this work, we have ignored
the gradient descent based approach because the scale of our
optimization problem has been made drastically smaller than
the traditional ML techniques (via the set of unified factors),
which have a large parameter set.

After the optimal parameters have been identified, we map
the trust scores for a device for the benign and a small portion
of the attacked dataset (cross-validation set). We then use an
SVM to find the optimal separation between these labels of
trust scores for all devices belonging to the UNSW dataset.
The learned threshold Γ serves as a classifier in the test set.

V. EXPERIMENTAL RESULTS

Here we present the experimental results of our scoring
model. First, we provide a dataset description followed by the
trust scoring observations for each device.

A. Dataset Description

For validating our model, we use devices from two different
datasets: (1) UNSW Smart Home IoT dataset [10] and the (2)
CTU Apostemat IoT-23 dataset [22].



The UNSW dataset contains a set of IoT and non-IoT de-
vices and also MUD profiles. We select benign data of 10 days
and attacked data of 5 days from four IoT devices (Amazon
Echo, Phillips Hue Bulb, iHome Smart Plug, Samsung Camera)
for showing performance. Our device selection is based on
the attacked devices mentioned in previous work on [10] to
compare performance. The attack dataset had contained: (i)
direct attack (viz., TCP SYN (referred to as TCP SYN (D)
in the table), and Fraggle) (ii) reflection attack (viz., SNMP,
SSDP, DDoS, TCP SYN (referred as TCP SYN (R) in the
table) Samsung Smart Camera, and iHome Plug. Out of the
five days, two days were used as a cross-validation set, and
the rest of the three days was our testing set.

We also used labeled benign and attacked database for real
network traffic obtained from CTU Avast [22]. We used the
second dataset to prove the generality of our framework. We
chose two devices Somfy Smart Door Lock and Amazon Echo,
that contain reflective DDoS attacks through malwares; Torri,
Hide and Seek, and Muhstik. In Table I we present a mapping
showing the implemented attacks launched against IoT devices
in the labs of both UNSW and CTU datasets.

Table I: Mapping IoT devices with attacks

Attack types Echo
UNSW

Hue
UNSW

S.Camera
UNSW

iHome
UNSW

Somfy
CTU

Echo
CTU

Hue
CTU

Hide& Seek X
Muhstik X
Torri X
SNMP X
SSDP X
TCP SYN (R) X X
Smurf X X
TCP SYN (D) X X
Fraggle X X
DDoS X X X X

B. Experimental Set Up

We use Wireshark to parse the raw .pcap traffic files into
CSV files and partition them to 10, 2, and 3 days of training,
cross-validation, and testing sets. We create the ACL table flow
rules based on MUD profiles. In this paper, we calculate all
factors and features based on packets per second that we derive
from the data as well as the flow directions. More details on
this can be found [10]. However, how we interpret the MUD for
the ACL and factor mapping is done differently than [10], as
explained earlier, which explains better accuracy in our method.

In all the figures, we show a continuous evolution of trust
by retrofitting the parameters across the whole duration of the
dataset, to give a sense of how the real-time evolution of trust
values happen as soon as there is some incidence of attack.

C. UNSW Dataset Results

Figs. 6a, 6b, 6c, 6d respectively correspond to results from
the UNSW dataset, that shows the evolution of trust values for
Amazon Echo, Phillips Hue Bulb, iHome Smart Plug, Samsung
Smart Camera IoT devices. In each of these figures, both the in-
stantaneous raw trust values per time window FR(i)(T ) (dotted
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Figure 6: UNSW Dataset: Trust Values over Time
blue lines) and the cumulative weighted moving average over
the instantaneous trust values(solid orange lines) are shown.

Additionally, each result has two regions; no attack days and
attack days. Our three days of the testing set corresponds to the
attacked days. To give a sense of how quickly our framework
responds to the incidence of attacks, we created an augmented
dataset with the ten days of benign set appended just before the
three days of the test set (containing attacks). We then applied
our model with the learned parameter. Below we describe the
specifics of observations for each device in the UNSW dataset.

1) Amazon Echo: Amazon Echo device from UNSW con-
tains Fraggle and ARP spoof attacks, as reported by [10].
Fig. 6a, shows that our framework produces reduced trust
values in the attacked dataset compared to the benign dataset,
prove that the FR value reflects the attack behavior.

2) UNSW Philips Hue Bulb: The Phillips Hue Bulb IoT
device from UNSW contains attacks such as SSDP and SNMP
reflection, Smurf, TCP SYN flood as reported by [10].
Fig. 6b, shows that trust values drop after the attacked dataset
starts performing malicious activity. Here the attack volume
is targeted to those within the cloud domain of the provider,
and the attack volume is lower. Therefore the drop in the trust
value is not as strong as in Amazon Echo. The start and stop
times of each attack type are not labeled in the dataset, which
proves that our method need not know such attack specifics
for detection.

3) UNSW iHome Smart Plug: The iHome Smart Plug IoT
device from UNSW, contain a DDoS attack launched after an
ARP poisoning exploit [10]. Fig. 6c clearly shows the reduction
in the trust value during the attack days, although the time it
takes to start decreasing is much higher than the other devices.
This is because the attack volume is at times lower than the
benign total volume, as revealed from the data traces.

4) UNSW Samsung Smart Camera: The Samsung Smart
Camera IoT device from UNSW contains attacks such as TCP
SYN, Fraggle, SMURF etc. and reported by [10]. Congruent
to previous observations Fig. 6d, the progression of decrease



0 10 20 30 40 50 60 70 80

Time Interval (Hour)

-1

-0.5

0

0.5

1

T
ru

s
t 
V

a
lu

e

CTU AmazonEcho CWMA

CTU AmazonEcho FR

No Attacked Days

Attack Starts

Attacked

Days

(a) Amazon Echo CTU

0 10 20 30 40 50 60 70 80

Time Interval (Hour)

-1

-0.5

0

0.5

1

T
tu

s
t 

V
a
lu

e

Philps Hue CTU CWMA

Philps Hue CTU FR
Attacked

Days

Attack starts

No Attacked Days

(b) Philips Hue Bulb CTU

0 10 20 30 40 50 60 70 80

Time Interval (Hour)

-0.2

0

0.2

0.4

0.6

0.8

1

T
tu

s
t 

V
a
lu

e

CTU Hue FR

CTU Hue CWMA

No Attack Days

Attack Starts

Attack

Days

(c) Somfy Smart Door Lock

Hue UNSW iHome UNSW Echo UNSW Somfy CTU S.Camera UNSW Hue CTU Echo CTU

IoT Devices from UNSW and CTU 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
ru

s
t 

V
a

lu
e

 F
R

No Attack

Attacked

(d) Steady State Trust Values

Figure 7: CTU Dataset: trust values overtime

in trust values is rapid after the attack days start showing that
our method can detect the attack behavior.

D. Proving Performance Generality over CTU dataset

The CTU dataset contains 69 hours of benign data for all
devices and 4 to 7 hours of attacked data depending on the
device type. The attacks belonged to custom malware cam-
paigns such as Hide Seek, Torri, and Muhstik, and the device
mapping with the malware are shown in Table I. Here there is
no cross-validation; we apply our model and parameters from
the UNSW dataset to evaluate the generality of the method.

1) Time Evolving Trust Values: Fig. 7a, shows the drop in
trust values for an amazon echo device from the CTU dataset
with a Hide and Seek attack, within an hour of the start of an
attack. The Fig. 7b shows similar observations for a Phillips
Hue bulb containing Muhstik malware attack.

Fig. 7c, shows a new IoT device type not found in the
UNSW dataset. However, our model still detects attacks on this
device, which did not feature in either the training or parameter
selection process. We can observe from Fig. 7c that regardless
of this, our framework is still able to detect this attack, although
the time to detection is larger compared to the other devices.

2) Steady State Trust Values: The Fig. 7d, shows a steady-
state trust value difference between the no attacked days and
attacked days that compares different device final trust value
at the end of the benign and the attacked test set and how far
it is from the threshold Γ = 0.02 obtained by SVM over the
cross-validation set. As we can see, although the trust values
during attack stages vary across devices, all of them have trust
values below the learned threshold when their network traffic
flow data was captured from the attacked dataset.

CONCLUSION AND FUTURE WORK

Vulnerable IoT devices increase the risks of attacking smart
homes and unauthorized leakage. We believe that security and
privacy services in IoT systems can be optimized by our fog
trust scoring model deployed as a part of the FIoT middleware

in a smart home gateway. Through this work, we showed that it
is possible to move towards the unified treatment of detecting
cyber attacks on smart home IoT devices.
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