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Abstract—Reliability of a cooperative decision mechanism is
critical for the proper and accurate functioning of a networked
decision system. However, adversaries may choose to compromise
the inputs from different sets of components that comprise the
system. Often times, the monitoring mechanisms fail to accurately
detect compromised inputs; hence cannot categorize all inputs
into polarized decisions: compromised or not compromised.

In this paper, we propose a Bayesian inference model based
on multinomial evidence to quantify reliability for a cooperative
decision process as a function of beliefs associated with observa-
tions from the imperfect monitoring mechanism. We propose two
reliability models: an optimistic one for a normal system and a
conservative one for a mission critical system. We also provide
an entropy measure that reflects the certainty or uncertainty
on the calculated reliability of the decision process. Through
simulation, we show how the reliability and its corresponding
entropy changes as the accuracy of the underlying monitoring
mechanism improves.1

I. I NTRODUCTION AND MOTIVATION

Oftentimes, reliability of a cooperative decision in a net-
worked system depends on how well the individual compo-
nents perform and how reliable they are [1]. The individual
components could be a piece of hardware or software, or a link
connecting two devices– all of which work together enabling
the system as a whole to perform its tasks. To improve
reliability of a decision making process in the presence of
possible component failures, redundancy and voting schemes
are often used [6]. Usually voting schemes are associated with
a fusion rule (e.g., majority or plurality voting) which dictates
how individual votes are combined to decide the final output.

A malfunction or a security breach due to an adversary
might result in a faulty input (vote) to the central decision
making entity. Such inputs may potentially have an adverse
effect on the reliability of the decision process– the extent of
which depends on the inputs in question. A failure monitoring
mechanism is supposed to detect such faults and provide
a ‘feedback’ on each component. However, this monitoring
mechanism might not have the ability to identify such faults
with certainty due to inherent imperfect temporal and spatial
factors. Hence a binary decision on whether a fault occurred
or not is not always possible for all inputs. With the adversary
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employing a wide variety of attacks to compromise adynamic
set of inputs (i.e., deciding the number of inputs and which
ones), and imperfect monitoring conditions, it becomes diffi-
cult for a failure monitoring mechanism to quantify reliability
of a collective decision based on inputs from individual
components.

In the presence of adversaries i.e., intentional cyber-attacks,
the compromised inputs may induce incorrect results in a co-
operative decision making process. The set of inputs attacked
usually vary over time. The damage is evident when some
central entity of the system using some fusion rule fuses the
inputs from all components– compromised or not. A simple
example of a cooperative decision process could be a voting
system where components vote to produce a binary outcome. If
majority of the inputs from the components are compromised,
then the simple majority voting rule may produce a wrong
result [4].

In this paper, we investigate the quantification of reliability
of a cooperative decision process based on the inputs from
various components. We assume, each component provides a
single input, all of which are prone to attacks. The underlying
imperfect failure monitoring mechanism produces varying
feedback over time. We consider that the outcome of the moni-
toring mechanism can be placed into three categories: thosewe
know havenot been compromised, those we know havebeen
compromised, and those which cannot be inferred either way.
Given these, we compute the reliability of a decision process
in making a decision i.e., how reliable its output is. In this
regard, we conceptualize the outcome of monitoring the input
over time as a multinomial hypothesis of a Bayesian inference
model with three parameters. We build a Bayesian inference
based reliability model, where we assign a value to a decision
that indicates how reliable the outcome of the decision is. The
way reliability is computed also depends on how much risk a
system can tolerate. For example, a mission critical system
may need to have a more strict reliability model because
the associated risks are too high. Therefore, we propose
two ways of computing the reliability– first is an optimistic
one and the second is a conservative one. The optimistic
model could be applied to systems where some tolerance
for wrong decisions are allowed. However, for a mission
critical system where there is almost no room for erroneous



decisions, the conservative model could be used. To account
for the confidence associated with the reliability computation,
we propose an entropy based uncertainty value to represent
how certain or uncertain the computed reliability is. A lower
uncertainty associated with reliability value is an indication of
being more confident about that value. We conduct extensive
simulation experiments and show how reliability varies under
a variety of system factors like attack intensity and inaccurate
detection. We observe that with more inputs compromised, the
reliability over the fused decision reduces. Low reliability may
also be caused by temporal or initial lack of evidence due to
uncertainty. However, as time evolves, the system adjusts itself
towards more accurate monitoring and the reliability improves.

The rest of the paper is organized as follows. In section II,
we present the system model and state all the assumptions. In
section III, we provide the Bayesian model for reliability.We
present the reliability models in section IV. The simulation
model and results are discussed in section V. Conclusions are
drawn in the last section.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a time-slotted system comprisingN voting
components

each of which provides only one input (i.e., the vote) on
each time slot. The nature of the decision is generic; it could
be as simple as a binary voting or it could be some complex
decision metric. A centralized controller fuses all votes from
each component through a fusion scheme (e.g., majority or
plurality voting rule) to arrive at aglobal decision.
•Adversarial model: We assume that all the inputs from
each component are exposed to anadversary whose goal is
to disrupt the voting process at the central controller. The
adversary has some predefined attack resources and can choose
to attack different sets of inputs over time and also attack
varying number of inputs in each time slot. However, it
maintains a long term average of the fraction of the inputs
it attacks which we call the probability of attack and denote
as Pa. For example,Pa = 0.6 means that the adversary
compromises60% of the inputs over a large period of time.
Hence a single observation (over one time slot) is not sufficient
for characterizing the behavior of the adversary.
•Imperfect component failure monitoring: We assume that
there is a component failure monitoring or anomaly detection
mechanism in place that infers whether the input from each
component has been compromised or not. Oftentimes, the
monitoring mechanism cannot infer anomaly with certainty.
Thus, it classifies the inputs into three categories: i) compro-
mised, ii) not compromised, and iii) undecided. All three are
a function of environmental parameters that may be dynamic
over time. Note, the monitoring occurs over a period of time.
Also system transients and noisy environments may increase
temporal uncertainty. Therefore, reliability is computedover
time– a larger time window of observation allows a more
accurate estimation of the actual reliability.
•Uniformly distributed prior inference: Since there is no
bias over any of the three possible outcomes of the monitoring

process, we assume that the initial probabilities of each is
equal.
•Probability of detection: We define the probability of
detection as the percentage of ‘components’ inputs that can
be accurately inferred as compromised or not compromised
and denote it asPdet. Let us further illustrate the meaning
of Pdet using Fig. 1 that shows an input in reality could be
either compromised or not compromised. If compromised, it
can be inferred as either as compromised with a probability
(saya1) or undecided with probability1−a1. Note, we assume
that there is no way a compromised input will be inferred
as not compromised. This assumption is because we argue
that ‘undecided’ is inferred in absence of credible evidence
else there will be a compromised feedback only when sure.
Similarly, if an input is not compromised, it can be inferred
as either ‘not compromised’ with a probability (sayb1) or
‘undecided’ with probability1− b1. Again, there is no way a
not compromised component will be inferred as compromised.
Thus, for the two real cases, detection occurs with probabilities
a1 andb1. If an input has equal chances of being compromised
and not compromised, thenPdet =

a1+b1
2 . Else,a1 andb1 will

have to be weighted with their corresponding probabilities. For
all practical purposes, we considerPdet to be at least0.5.

a1

b1

1 − a1
1 − b 1

Compromised

Undecided

Not compromised

Compromised

Not compromised

Real

Input

Inferred

Fig. 1. Inference possibilities for detection probability

The above features make the problem of computing the re-
liability of the output decision a probabilistic concept. Hence,
we compute the reliability as a continuous process based on
observations over time slots. If the adversary uses the same
attack strategy, then the reliability will converge sooner. On the
other hand, if the adversary changes its attack strategy (i.e.,
dynamic attack strategy), the reliability will oscillate even for
large time windows.

III. R ELIABILITY BASED DECISION MAKING

Suppose that the three feedbacks of the monitoring
mechanism– ‘not compromised’, ‘compromised’, or ‘unde-
cided’ be denoted byα, β andµ respectively. Letnα represent
the number of inputs that have ‘not’ been compromised,
nβ represent the number of inputs observed to have been
compromised, andnµ is the number of inputs for which we
do not know either way. Of course,nα+nβ +nµ = N . Since
the values ofnα, nβ andnµ change over time, we represent
these observations at timet asnα(t), nβ(t) andnµ(t).

Since the system’s underlying parameters of cooperative
voting behavior are unknown, we propose to use Bayesian
inference to update corresponding probability estimate for a
hypothesis that the decision process is correct with a certain



TABLE I
NOTATIONS

Symbol Meaning
α, β, µ Not compromised, compromised or undecided events
nα Number of inputs detected as ‘not compromised’
nβ , nµ No. of inputs det. as ‘compromised’ and ‘undecided’
N Total number of voting components
θα, θβ , θµ Unknown probability for observing eventα, β, µ
θ̄ Bayesian probability parameters of the three events
X(θ̄) Hypothesis of a event
X̂(θ̄ Posterior hypothesis or belief
D(N) Random vector denoting data hyperparameter
Pdet Probability of detection
Rα, Rβ , Rµ Posterior Bayesian belief of the three events
Ro

s Reliability of an optimistic system
Rc

s Reliability of an conservative system
Es Entropy or uncertainty associated with the system

reliability. The system is only as reliable as the individual
inputs are. Therefore, we have to calculate the posterior
probabilities associated with encountering each of the three
feedbacks. The final decision reliability will be a functionof
these posterior probabilities which are also known as belief
estimate in Bayesian inference.

To begin with, an uniform belief over the three possibilities
is assumed as there is no initial information. As time pro-
gresses, we update the belief estimate based on the observed
values ofα, β, and µ which increases the accuracy of the
estimate of the belief associated with each category.

We defineθα, θβ , andθµ as the probabilities for an input
being ‘not compromised, ‘compromised’, and ‘undecided’
respectively. Of course,θα+ θβ + θµ = 1, since the outcomes
are exhaustive and mutually exclusive. We defineX(θ̄) as the
hypothesis described by these underlying unknownBayesian
probability parameters where θ̄ = {θα, θβ , θµ}.

Let Dα, Dβ , andDµ represent the random variables that
represent the number of times the outcomesα, β andµ occur.
The observation data can be represented as random observa-
tion vectorD(N) = {Dα, Dβ , Dµ} having a multinomial
distribution also known asconcentration hyperparameter of
the underlying 3-tuple probability parameter described byθα,
θβ , and θµ. The commonly used notations are tabulated in
Table I.

A. Bayesian Inference

As mentioned earlier, there areN independently monitored
components of a system whose parameters for voting behavior
are unknown due to changing adversarial attack strategies and
the imperfect monitoring mechanism. Given this, we calculate
the Bayesian belief associated with ‘not compromised’. Sim-
ilarly, we will model Bayesian posterior belief for the other
two cases as well viz. compromised and undecided.

We use the observation counts from the sequential observa-
tions over time to calculate the posterior Bayesian estimate of
each of the parameters. Our objective is to estimate and update
the probability parameters inX(θ̄), viz. θα, θβ , andθµ based
on observation evidenceD(N) and prior information on the
hypothesis parameter,̄θ, itself.

Since there is no information aboutθ̄ initially, we consider
the prior parameters of̄θ to be uniformly distributed a-priori.
Subsequent observations will decide how these parameters are

updated. Our first step is to calculate the Bayesian estimateof
θ̄.

First, we show the case of estimating belief that a ‘not
compromised’ occurs (θα). Since in Bayesian inference, the
assumption is that prior and posterior probability have the
same distribution, we can formally define the probability
parameters as:

P (X(θ̄) = α|θ̄) = θα

P (X(θ̄) = β|θ̄) = θβ

P (X(θ̄)) = µ|θ̄) = θµ

(1)

This assumption is due to the well known fact that a Dirichlet
distribution acts as a conjugate prior to multinomial distribu-
tions [7]. Hence prior and posterior preserve the same form.

The observations dataD(N) can be treated as a multinomial
distribution with probability parameterθα, θβ , andθµ, where
the probability mass function is given by:

P (Dα = nα, Dβ = nβ , Dµ = nµ|θ̄) = P (D(N)|θ̄)

=
N !

nα!nβ !nµ!
θnα
α θ

nβ

β θnµ
µ (2)

Given this we can use Bayes theorem to calculate the
posterior belief estimate on the event of a positive interaction
X̂(θ̄) = α, given observation dataD(N) as:

P (X̂(θ̄) = α|D(N)) =
P (X̂(θ̄) = α,D(N))

P (D(N))
(3)

Denominator of the above equation is the marginal probabil-
ity that can be conditioned or marginalized on all possible
outcomes for̄θ and since probabilities are continuous

P (D(N)) =

∫

D(N)(θ̄)

P (D(N)|θ̄)f(θ̄)d(θ̄) (4)

Since there is no prior information on̄θ (before any observa-
tions) in Eqn. (4), we can assume it to be uniformly distributed
such thatf(θ̄) = 1 and we can put Eqn. (2) in Eqn. (4), and
get

P (D(N)) =
N !

nα!nβ !nµ!

∫

D(N)(θα,θβ ,θµ)

θnα
α θ

nβ

β θnµ
µ dθαdθβdθµ (5)

For simplicity, let
∫

D(N)(θα,θβ ,θµ)

θnα
α θ

nβ

β θ
nµ
µ dθαdθβdθµ = I1

To solve forI1 we use the multivariate generalization of the
Eulerian integral of first kind. Note thatD(N)(θα, θβ , θµ)
denotes a space and we know that a space ofm(= 3)
parameters has onlym − 1(= 2) degrees of freedom due to
the additivity constraintθα + θβ + θµ = 1. Therefore when
we integrate over this space, the integration hasm − 1 = 2
dimensions. Hence

I1 =

∫ 1

0

∫ 1−θα−θβ

0

θ(nα+1)−1
α θ

(nβ+1)−1
β (1−θα−θβ)

(nµ+1)−1dθαdθβ

(6)
Eqn. (6) is a known form for the multivariate extension of

the Beta function which in this case is defined asB(nα +



1, nβ + 1, nµ + 1). The proof can be found in Lemma 2.4.1
of [3]. In generalB(α1, · · · , αm)

=

∫

D(x1,··· ,xm−1)

xα1−1
1 ...(1−

m−1∑
i=1

xi)
αm−1dx1...dxm−1

=

∏m
i=1 Γ(αi)

Γ(
∑m

i=1 αi)
=

Γ(α1) · · ·Γ(αm)

Γ(α1 + · · ·+ αm)
(7)

Using the above result, we can write Eqn. (6) as

I1 = B(nα + 1, nβ + 1, nµ + 1)

=
Γ(nα + 1)Γ(nβ + 1)Γ(nµ + 1)

Γ(nα + 1 + nβ + 1 + nµ + 1)
(8)

Putting Eqn. (8) in Eqn. (5) we get:

P (D(N)) =
N !

nα!nβ !nµ!

Γ(nα + 1)Γ(nβ + 1)Γ(nµ + 1)

Γ(nα + 1 + nβ + 1 + nµ + 1)
(9)

Since the parameters in gamma functionsnα+1 etc. are all
non-zero positive values, we can use the resultΓ(z) = (z−1)!
to calculate Eqn. (9) as

P (D(N)) =
N !

(N + 2)!
(10)

Assuming conditional independence between theX̂(θ̄),
D(N) and θ̄, we calculate the numerator of Eqn. (3),
P (X̂(θ̄) = α,D(N)), as:

=

∫

D(N)(θ̄)

P (X(θ̄) = α,D(N)|θ̄)f(θ̄).d(θ̄)

=

∫

D(N)(θ̄)

P (X(θ̄) = α|θ̄)P (D(N)|θ̄)d(θ̄)

=
N !

nα!nβ !nµ!

∫

D(N)(θα,θβ ,θµ)

θαθ
nα
α θ

nβ

β θnµ
µ dθαdθβdθµ

=
N !

nα!nβ !nµ!

∫

D(N)(θα,θβ ,θµ)

θnα+1
α θ

nβ

β θnµ
µ dθαdθβdθµ (11)

The above integral has the same form as Eqns. (5), (6), and
(7). Hence this integral portion of Eqn. (11) can be rewritten as

=

∫ 1

0

∫ 1−θα−θβ

0

θ(nα+2)−1
α θ

(nβ+1)−1
β (1− θα − θβ)

(nµ+1)−1dθαdθβ

which can be solved using Eqn. (7).
Using the above result, Eqn. (11) can be simplified as

P (X̂(θ̄) = α,D(N)) =
N !(nα + 1)

(N + 3)!
(12)

Thus, Eqn. (3), can be solved by dividing Eqn. (12) by
Eqn. (10), which gives

P (X̂(θ̄) = α|D(N)) =
nα + 1

N + 3
(13)

Similarly, P (X̂(θ̄) = β|D(N)) =
nβ+1
N+3 and P (X̂(θ̄) =

µ|D(N)) =
nµ+1
N+3 . These equations are the expressions for

posterior belief of ‘not compromised’, ‘compromised’, and
‘undecided’. To simplify the notations of belief estimatesof
the three categories, we rewrite them asRα, Rβ , Rµ respec-
tively. Of course, it can be verified thatRα + Rβ + Rµ = 1.
The above equations also satisfy the Cromwell’s rule [5],
which suggests that no prior belief unless logically impossible,
should be assigned zero probability even if no events in that
category has occurred so far.

We mentioned that in Bayesian inference posterior prob-
abilities may be used as priors for future calculations. The
Cromwell’s rule leaves open the probability however small,
to experience an event that has not occurred yet but may
happen in future. Hence Bayesian estimates should have non-
zero priors for an event that has not occurred yet. From the
derived equation it is evident that even ifnβ = 0, Rβ 6= 0, is
a very small number but not zero whenN is large.

IV. RELIABILITY MODELS

We propose two reliability models and also show how en-
tropy can capture the uncertainty associated with the reliability
calculation due to the undecided inputs.

A. Decision Reliability for an Optimistic System

For a system, we assumed that adversary has uniformly
chosen the inputs it chooses to attack i.e., there is no reason
for preferential attack on a certain component’s input. Hence
we can account for the undecidedRµ by splitting it in the
ratio of Rα : Rβ , and adding it to the valueRα to provide
the optimistic reliability denoted byRo

s. Of course, when the
proportion ofRµ is high, we may not be as confident on the
reliability value than when we have lower values ofRµ. Thus,
Ro

s is computed as:

Ro
s = Rα +

Rα

Rα +Rβ

Rµ (14)

B. Decision Reliability for a Conservative System

Unlike the optimistic approach, where the undecided ones
are split in a ratio, the conservation model treats the undecided
ones as if they were compromised. In other words, only the
‘not compromised’ event (Rα) is used for computing the
reliability. Hence,

Rc
s = Rα (15)

This conservative way of computing the reliability is more
appropriate for mission-critical systems where the decisions
can only be made based on the ‘not compromised’ inputs. No
risk is taken on the undecided inputs even if there could be
some that were not compromised.

C. Uncertainty associated with Reliability

System reliability as computed by Eqn. (14) can yield the
same value for different sets ofRα, Rβ , andRµ. For example,
consider two scenarios.
Scenario 1:Rα = Rβ = 0.5, andRµ = 0
Scenario 2:Rα = Rβ = 0.3, andRµ = 0.4
For both scenarios, the optimistic decision reliability asgiven



TABLE II
RELIABILITY -ENTROPY TUPLE; N=1000

Scenario Rα Rβ Rµ R
o
s Es

1 0.5 0.5 0.0 0.5 1.00

2 0.3 0.3 0.4 0.5 1.57

3 0.2 0.4 0.4 0.33 1.51

by Eqn. (14) is 0.5 as shown in Table II. It can be noted
that though scenario 2 has higherRµ than scenario 1,Ro

s

for both are the same. However, intuitively we ought to trust
scenario 1 more than scenario 2 because more certain decisions
have been made whenRµ is less. We know that higher values
of Rµ reduces the chances of being closer to the real value
of reliability. As shown in the two scenarios, the optimistic
reliability can yield the same value for different sets ofRα,
Rβ , andRµ

In order to illustrate the uncertainty associated with theRµ,
we use entropy which is a measure of uncertainty inherent in
a system. Usually, entropy of a system uses the steady state
probabilities that the system could be in. We define the entropy
of the decision reliability as:

Es = −[Rαlog2(Rα) +Rβlog2(Rβ) +Rµlog2(Rµ)] (16)

The entropy,Es, captures the uncertainty which is shown
in Table. II. Scenario 1 withRµ = 0 has an uncertainty
measure of 0.69 which is lower than scenario 2 with1.08.
Thus, the reliability of scenario 1 can be trusted more than
that of scenario 2.

Now, let us consider scenario 3 which has the sameRµ as
of scenario 2; however,Rβ is higher than scenario 2. Hence
scenario 3 has lesser reliability value than scenario 2. Since
scenario 2 has been established to be less trustworthy than
1, we can also verify that fromRo

s of scenario 3 is also
less than that of scenario 1. However, these arguments hold
true only when at least 50% of the observations are accurate
observations, i.e.,Rµ < 0.5. This is a reasonable assumption
as it is impractical to have a detection mechanism which
cannot detect or decide majority of the time.

V. SIMULATION MODEL AND RESULTS

We simulate a generic centralized system with 100 com-
ponents. Inputs from all components are monitored by an
imperfect monitoring mechanism that produces three possible
outcomes. The probability of detection,Pdet, is varied to
capture its effects on decision reliability.

An adversary attacks and compromises different sets of
inputs over time. The number of inputs compromised vary
over time slot; although the long-term average of the number
of inputs compromised, denoted byPa, remains the same. We
study the decision reliability for different values ofPa, and
plot instantaneous and moving average of decision reliability.
We first present the results for an optimistic system and then
for a more conservative system.

A. Optimistic Decision Reliability: Instantaneous and Average

In Fig. 2, we plot both the instantaneous and average
decision reliability for the optimistic reliability modelwhen
the adversary launches attacks withPa = 0.5. We observe
that the decision reliability fluctuates over time. As expected,
with sufficient observations, the moving average of decision
reliability converges to a steady state reliability equal to 1−Pa

which in this case is 0.5.
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Fig. 2. Instantaneous and average decision reliability with Pa = 0.50 and
Pdet = 0.8

B. Decision Reliability and Entropy

In Fig. 3, we plot steady state decision reliability with
increasingPa and for two different values ofPdet. The plots
show a steady decrease of decision reliability values forPdet

0.5 and 0.9. Recall, with differentPdet the values of average
decision reliability may differ but the relation betweenRo

s

and Pa does not change with change inPdet unlike Rc
s.

This is because inputs chosen by the adversary is uniformly
random. The conservative reliabilityRc

s, also falls linearly with
increasingPa, but the slope or rate of this change varies for
the different values ofPdet. This is because the conservative
model does not account for the undecided ones. Hence a lower
value of Pdet yields a lower reliability value than a higher
value ofPdet.

Furthermore, Fig. 4 shows the entropy values of the system
under the same set ofPdet. This shows that a system with
higherPdet has a lower uncertainty on the decision reliability
estimate for all values ofPa. This is useful when we use
optimistic system reliability which uses a fraction of undecided
ones to contribute to the final reliability value.
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In Fig. 5, we show how entropy changes with increasing
probability of attack. As time evolves andPdet improves,
the uncertainty (i.e., entropy) associated with the decision
reliability decreases indicating increased confidence on the
reliability values.

C. Decision Reliability with Time Variant Pa

Some adversaries may choose to attack with short-term low
or high attack probability; however, maintaining the long-term
average value ofPa. For example, an adversary attacks less
initially conserving its attack resources for future and eventu-
ally attacking more (under favorable conditions). In Fig. 6, we
investigate how the proposed model behaves in such cases. We
consider an adversary withPa = 0.5. The first 500 slots are
attacked less and next 500 slots are compensated by attacking
more. We observe that decision reliability progressively moves
towards the expected reliability, although no strict convergence
on the decision reliability is achieved.
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Fig. 5. Conservative decision entropy with incremental increase ofPdet

D. Conservative Reliability Model

In Fig. 7, we plot the changes in conservative decision reli-
ability, over time with gradual increase inPdet. As mentioned
earlier, if the system evolves into more accurate monitoring,
the decision reliability also improves, althoughRs 6= 1− Pa.
Thus, having a conservative decision reliability is not unfair,
given that risk associated with it is high, and there is scope
for improving reliability when detection accuracy increases.
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Fig. 6. Decision Reliability under Non-Uniformly distributedPa = 0.50
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VI. CONCLUSIONS

In this paper, we presented a Bayesian inference based
model to translate multinomial observations for any voting
system under imperfect monitoring. We computed the poste-
rior belief for the decision reliability based on the number
of compromised, not compromised, and undecided inputs.
We proposed two models for decision reliability– optimistic
and conservative. Through simulation experiments, we showed
how the decision reliability changes with attack probability
which also affects the detection accuracy of the underlying
monitoring mechanism. Using entropy, we provided a way to
evaluate the certainty of the reliability calculation. Finally, we
showed how the decision reliability decreases when the attack
probability increases.
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