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Abstract—Reliability of a cooperative decision mechanism is employing a wide variety of attacks to compromisdyaamic
critical for the proper and accurate functioning of a networked  set of inputs (i.e., deciding the number of inputs and which
decision system. However, adversaries may choose to compromisgynes) - and imperfect monitoring conditions, it becomesi-dif
the inputs from different sets of components that comprise the . o . . S
system. Often times, the monitoring mechanisms fail to accurately cult for a fallgre monltprlng mechamsm to quantify rel'@'
detect compromised inputs; hence cannot categorize all inputs Of @ collective decision based on inputs from individual
into polarized decisions: compromised or not compromised. components.

In this paper, we propose a Bayesian inference model based |n the presence of adversaries i.e., intentional cybecks,

8” multinomial eVide“Cfe to _quanftifg/ Ir_elfiability for adCOQ%erabti"e the compromised inputs may induce incorrect results in a co-
ecision process as a function of beliefs associated with observa- ) . ) .
tions from the imperfect monitoring mechanism. We propose two operative decision making process. The set of inputs atack

reliability models: an optimistic one for a normal system and a Usually vary over time. The damage is evident when some
conservative one for a mission critical system. We also provide central entity of the system using some fusion rule fuses the
an entropy measure that reflects the certainty or uncertainty inputs from all components— compromised or not. A simple
on the calculated reliability of the decision process. Through example of a cooperative decision process could be a voting

simulation, we show how the reliability and its corresponding -
entropy changes as the accuracy of the underlying monitoring system where components vote to produce a binary outcome. If

mechanism improves.? majority of the inputs from the components are compromised,
then the simple majority voting rule may produce a wrong
|. INTRODUCTION AND MOTIVATION result [4].

Oftentimes, reliability of a cooperative decision in a net- In this paper, we investigate the quantification of relidpil

worked system depends on how well the individual comp8—f a cooperative decision process based on the inputs_from
nents perform and how reliable they are [1]. The individuéﬂf""”olus, comp?lnefntsr.]_V\r/]e assume, each cokmporr]\ent F(’jm""?'es a
components could be a piece of hardware or software, or a lifk9'€ input, all of which are prone to attacks. The undedyi

connecting two devices— all of which work together enabliniPerfect failure monitoring mechanism produces varying
the system as a whole to perform its tasks. To impro edback over time. We consider that the outcome of the moni-

reliability of a decision making process in the presence #rng ;]nechanlsm can be pla_(;:(;j w;}to three <|:(ategorr]|esl:amese
possible component failures, redundancy and voting schenfg©W Navenot been compromised, those we Know haveeen

are often used [6]. Usually voting schemes are associattd v\ﬁqmpror;ised, and those Whiﬁh ce}prg)g)lt_ be finfe(;req either way.
a fusion rule (e.g., majority or plurality voting) which dites Given these, we compute the reliability of a decision preces

how individual votes are combined to decide the final outpdﬂ making a decision €., how reliable its ou_tpu_t Is. In .th's
A malfunction or a security breach due to an adversaf gart_j, we concept_uallz_e the outcome of monltor_lng _thetmpu

might result in a faulty input (vote) to the central decisio ve(; t:me'tﬁstr? multlnomlatl hyp?;/hezlsllgfa Sayes!an |.nffeeenc

making entity. Such inputs may potentially have an advergéo el wi ree parameters. Ve build a bayesian interence

effect on the reliability of the decision process— the etten ased reliability model, where we assign a value to a detisio

which depends on the inputs in question. A failure monitjprinthat |nd'|ca't.es hOW reliable the outcome of the decision hm T
y reliability is computed also depends on how much risk a

mechanism is supposed to detect such faults and prov}% . .
a ‘feedback’ on each component. However, this monitori stem can tolerate. For example, a mission critical system
mechanism might not have the ability to identify such fauIt ay need. tto dhayek a mor(ta strrl]qt hrellljark]) |I|t); model because
with certainty due to inherent imperfect temporal and spati € associated nisks are 100 high. eretore, we propose

factors. Hence a binary decision on whether a fault occurr&§e Ways of computing the reliability— first is an optimistic

or not is not always possible for all inputs. With the adszaone and the second_ls a conservative one. The optimistic
model could be applied to systems where some tolerance

1Approved for Public Release; Distribution Unlimited: 88ABW14-4001, fo.r-wrong decisions are al!owed' However, for a mission
Dated 26 Aug 2014. critical system where there is almost no room for erroneous



decisions, the conservative model could be used. To accopmcess, we assume that the initial probabilities of each is
for the confidence associated with the reliability compatat equal.
we propose an entropy based uncertainty value to represetobability of detection: We define the probability of
how certain or uncertain the computed reliability is. A lowedetection as the percentage of ‘components’ inputs that can
uncertainty associated with reliability value is an indiica of be accurately inferred as compromised or not compromised
being more confident about that value. We conduct extensiamed denote it as’;.;. Let us further illustrate the meaning
simulation experiments and show how reliability varies emd of P,., using Fig. 1 that shows an input in reality could be
a variety of system factors like attack intensity and inaatai either compromised or not compromised. If compromised, it
detection. We observe that with more inputs compromises, tban be inferred as either as compromised with a probability
reliability over the fused decision reduces. Low relidpitnay (saya;) or undecided with probability —a;. Note, we assume
also be caused by temporal or initial lack of evidence due tioat there is no way a compromised input will be inferred
uncertainty. However, as time evolves, the system adjtssl i as not compromised. This assumption is because we argue
towards more accurate monitoring and the reliability iny@ that ‘undecided’ is inferred in absence of credible evidgenc
The rest of the paper is organized as follows. In section B/se there will be a compromised feedback only when sure.
we present the system model and state all the assumptionsSimilarly, if an input is not compromised, it can be inferred
section Ill, we provide the Bayesian model for reliabiltye as either ‘not compromised’ with a probability (say) or
present the reliability models in section IV. The simulatio‘undecided’ with probabilityl — b,. Again, there is no way a
model and results are discussed in section V. Conclusians aot compromised component will be inferred as compromised.
drawn in the last section. Thus, for the two real cases, detection occurs with protbisil
a1 andb;. If an input has equal chances of being compromised
and not compromised, theP.; = ‘“T*”l Else,a; andb; will
We consider a time-slotted system comprisihg voting have to be weighted with their corresponding probabilitfes

II. SYSTEM MODEL AND ASSUMPTIONS

components all practical purposes, we considgy,., to be at leasb.5.
each of which provides only one input (i.e., the vote) on
each time slot. The nature of the decision is generic; itaoul Real _Inferred

be as simple as a binary voting or it could be some complex

decision metric. A centralized controller fuses all votesnf

each component through a fusion scheme (e.g., majority or / -3

plurality voting rule) to arrive at alobal decision. 1—/q,
eAdversarial model: We assume that all the inputs from

each component are exposed to aiversary whose goal is b :

to disrupt the voting process at the central controller. The

adversary has some predefined attack resources and carchoos  Fig. 1. Inference possibilities for detection probability

to attack different sets of inputs over time and also attack The above features make the problem of computing the re-
varying number of inputs in each time slot. However, ifiability of the output decision a probabilistic conceptette,
maintains a long term average of the fraction of the inpuige compute the reliability as a continuous process based on
it attacks which we call the probability of attack and denotebservations over time slots. If the adversary uses the same
as P,. For example,P, = 0.6 means that the adversaryattack strategy, then the reliability will converge soo@m the
compromises$0% of the inputs over a large period of time.other hand, if the adversary changes its attack strategy (i.
Hence a single observation (over one time slot) is not seffici dynamic attack strategy), the reliability will oscillateen for

for characterizing the behavior of the adversary. large time windows.
elmperfect component failure monitoring: We assume that
there is a component failure monitoring or anomaly detectio Il. RELIABILITY BASED DECISIONMAKING

mechanism in place that infers whether the input from eachSuppose that the three feedbacks of the monitoring
component has been compromised or not. Oftentimes, tmechanism— ‘not compromised’, ‘compromised’, or ‘unde-
monitoring mechanism cannot infer anomaly with certaintgided’ be denoted by, 5 andy respectively. Lek,, represent
Thus, it classifies the inputs into three categories: i) cmmp the number of inputs that have ‘not’ been compromised,
mised, ii) not compromised, and iii) undecided. All three arng represent the number of inputs observed to have been
a function of environmental parameters that may be dynantompromised, ana,, is the number of inputs for which we
over time. Note, the monitoring occurs over a period of timelo not know either way. Of course,, +ng+n, = N. Since
Also system transients and noisy environments may incredke values ofn,, ng andn, change over time, we represent
temporal uncertainty. Therefore, reliability is computeder these observations at timteasn, (t), ng(t) andn,(t).

time— a larger time window of observation allows a more Since the system’s underlying parameters of cooperative
accurate estimation of the actual reliability. voting behavior are unknown, we propose to use Bayesian
eUniformly distributed prior inference: Since there is no inference to update corresponding probability estimateafo
bias over any of the three possible outcomes of the mongorihypothesis that the decision process is correct with aicerta



TABLE |

NOTATIONS updated. Our first step is to calculate the Bayesian estiofate
0.

Symbol Meaning . A First, we show the case of estimating belief that a ‘not
a, B, 1 Not compromised, compromised or undecided events . , i R g .
N Number of inputs detected as ‘not compromised compromised’ occursé(,). Since in Bayesian inference, the
ng, M No. of inputs det. as ‘compromised” and ‘undecided' assumption is that prior and posterior probability have the
N Total number of voting components .. . . -
0u,05,0, Unknown probability for observing event, 3, u same distribution, we can formally define the probab|I|ty
[ Bayesian probability parameters of the three events parameters as:
X(0) Hypothesis of a event ’
X0 Posterior hypothesis or belief 0 — 1) =
D(N) Random vector denoting data hyperparameter P(X(Q_) a\@_) 9a
Pget Probability of detection P(X(Q) — Blg) — 9ﬁ (1)
Ro, R, Ry, Posterior Bayesian belief of the three events o _
R? Reliability of an optimistic system P(X(Q)) = N|9) = Qu
RS Reliability of an copservative_system_
Es Entropy or uncertainty associated with the system This assumption is due to the well known fact that a Dirichlet

. . . ... .. distribution acts as a conjugate prior to multinomial dlstr
reliability. The system is only as reliable as the |nd|V|quqi0ns [7]. Hence prior and posterior preserve the same form.

inputs are. Therefpre, we have to ce_xlculate the posteriorThe observations dat@(/N') can be treated as a multinomial
probabilities asso_mated \.N|.th enc_oup_terlng each of th_eethrdistribution with probability parametet,, 65, andéy, where
feedbacks. The final dgggon re'llab|I|ty will be a functioh the probability mass function is given by:
these posterior probabilities which are also known as belie
estimate in Bayesian inference. P(D,, = na,Dg =ng, D, =n,|0) = P(D(N)|0)

To begin with, an uniform belief over the three possibittie N! T g8 e
is assumed as there is no initial information. As time pro- - na!n,@!nu!ea 0" 0 @)
gresses, we update the belief estimate based on the observ%llven this we can use Bayes theorem to calculate the
values of«, 5, and p which increases the accuracy of the . . . A

. . . : posterior belief estimate on the event of a positive intiwac

estimate of the belief associated with each category. 5 (8) = a, given observation dat®(N) as:

We defined,,, 63, andd,, as the probabilities for an input ' '
being ‘not compromised, ‘compromised’, and ‘undecided’ P(X(0) = o, D(N))
respectively. Of coursé),, + 05 +0,, = 1, since the outcomes P(D(N)) ®)
ﬁre gt);]laslijss t(ij\/: Sgrr;g ergu;ua;lfl};gs;(clljl:]sai\e/(ral. ?/r:/e Sﬁmgﬁ;ge Denominator of the above equation is the marginal probabil-

yp y ying ity that can be conditioned or marginalized on all possible

probability parameters wheref = {0,,,03,0,,}. s . o :
Let D.., Dy, and D, represent the random variables tha?utcomes ford and since probabilities are continuous

P(X(8) = ol D(N)) =

represent the number of times the outcomeg andp occur. P(D(N :/P DINE) £(8)d(D 4
The observation data can be represented as random observa- (D(N)) ) (D(N)[6)1(0)d(©) )
tion vector D(N) = {D,, Ds, D,} having a multinomial D(N)(6)

distribution also known asoncentration hyperparameter of  gince there is no prior information @n(before any observa-
the underlying 3-tuple probability parameter describedby tions) in Eqn. (4), we can assume it to be uniformly distréfolit
s, and 6,. The commonly used notations are tabulated ig,cph thatf(#) = 1 and we can put Eqn. (2) in Egn. (4), and

Table . get
A. Bayesian Inference N! n
. , . ) P(D(N)) = —— / on Gﬂf*eﬁﬂdaadeﬁd&u (5)
As mentioned earlier, there aré independently monitored na'ngln,!
components of a system whose parameters for voting behavior DN)(0a,05,0,1)
are unknown due to changing adversarial attack strategigs a For simplicity, let [ e 925 Oyt df o dbsdb,, = I
the imperfect monitoring mechanism. Given this, we caleula D(N)(00,05,0,.)

the Bayesian belief associated with ‘not compromised’.-Sinfo solve forl; we use the multivariate generalization of the
ilarly, we will model Bayesian posterior belief for the othe Eulerian integral of first kind. Note thaD(N)(0..0p,6,.)
two cases as well viz. compromised and undecided. denotes a space and we know that a spacen¢t 3)
We use the observation counts from the sequential obserarameters has only, — 1(= 2) degrees of freedom due to
tions over time to calculate the posterior Bayesian estinoét the additivity constraint, + 63 + 0, = 1. Therefore when
each of the parameters. Our objective is to estimate andeipd4€ integrate over this space, the integration has- 1 = 2
the probability parameters iX (6), viz. 6., 05, andf,, based dimensions. Hence
on observation evidenc®(N) and prior information on the 1 p1=0,—0p n _ B
hypothesis parametef, its(elf.) L :/0/0 ggnuﬂ)_lgé . 1(1 — 00— 0p) ™D "0, d0
Since there is no information abod@tinitially, we consider (6)
the prior parameters df to be uniformly distributed a-priori.  Eqn. (6) is a known form for the multivariate extension of
Subsequent observations will decide how these parameterstae Beta function which in this case is defined Bén,, +



1,ng + 1,n, + 1). The proof can be found in Lemma 2.4.1posterior belief of ‘not compromised’, ‘compromised’, and

of [3]. In generalB(aq, - , ) ‘undecided’. To simplify the notations of belief estimatafs
me1 the three categories, we rewrite themARs, Rs, R, respec-
_ 20 1 (1 Z 2:)mLda ... dem tively. Of course, i't can be verified thdt, + Rg + R, = 1.
Pt The above equations also satisfy the Cromwell’s rule [5],
D("E“";rf"“l) which suggests that no prior belief unless logically imjiluss
_ ILEZi T(ew)  T(en)---Tlom) (7) should be assigned zero probability even if no events in that
Lo i) Tlag+--+am) category has occurred so far.
Using the above result, we can write Eqgn. (6) as We mentioned that in Bayesian inference poste_rior prob-
abilities may be used as priors for future calculations. The
I, = Bna+1lng+1,n,+1) Cromwell’s rule leaves open the probability however small,

I'(ne +1)I(ng + HI'(n, + 1)
I'(nag+14+ng+1+n,+1)
Putting Eqgn. (8) in Eqgn. (5) we get:

to experience an event that has not occurred yet but may
happen in future. Hence Bayesian estimates should have non-
zero priors for an event that has not occurred yet. From the
derived equation it is evident that evernif = 0, Rg # 0, is
P(D(N)) = Nl T(no +1)I(ng + 1)I'(n, + 1) (9 2 Very small number but not zero whenis large.
na!ngn,! T'(ng +14+ng+14n,+1)
Since the parameters in gamma functiens+ 1 etc. are all

non-zero positive values, we can use the reBt) = (2 —1)!
to calculate Eqn. (9) as

8

IV. RELIABILITY MODELS

We propose two reliability models and also show how en-
tropy can capture the uncertainty associated with thehiétia
calculation due to the undecided inputs.

N!

P(D(N)) = )

(10) A. Decision Reliability for an Optimistic System

_ N _ L For a system, we assumed that adversary has uniformly
Assuming conditional independence between i€f), chosen the inputs it chooses to attack i.e., there is no measo
D(N) and ¢, we calculate the numerator of Eqn. (3)for preferential attack on a certain component’s input. ¢éen

P(X(A) = a, D(N)), as: we can account for the undecide®, by splitting it in the
_ o ratio of R, : Rg, and adding it to the valu&, to provide
= /P(X(e) =, D(N)|0)f(0).d(6) the optimistic reliability denoted byr?. Of course, when the
D(N)(6) proportion of R, is high, we may not be as confident on the
_ _ _ reliability value than when we have lower valuesi®f. Thus,
= /P(X(H) = al0)P(D(N)[0)d(0) R? is computed as:
D(N)(é) R,
N R?=Ro+—=—"+R, (14)
= m / 000 03" 071 b db5do), Ro + Rp
: B D(N )(Gaﬁﬂ 0,) B. Decision Reliability for a Conservative System
N!

. N1 278 o Unlike the optimistic approach, where the undecided ones
C ngnglny! /9 05" 0" dbadOpddy (1) are split in a ratio, the conservation model treats the udedc
D(N)(8a:05,6,.) ones as if they were compromised. In other words, only the
The above integral has the same form as Eqns. (5), (6), aReit compromised’ event R,) is used for computing the
(7). Hence this integral portion of Eqn. (11) can be rewnitis  reliability. Hence,

_ /0/1 Z(nf+2) 19 (ng+1)— (1 —0, — 05)(n“+1)71d9ad9ﬁ Ri = R, (15)
0 This conservative way of computing the reliability is more
which can be solved using Eqn. (7). appropriate for mission-critical systems where the denisi
Using the above result, Eqn. (11) can be simplified as can only be made based on the ‘not compromised’ inputs. No
L Nl(na +1) risk is taken on the undecided inputs even if there could be
P(X(0) = a,D(N)) = N+ (12) some that were not compromised.
Thus, Eqn. (3), can be solved by dividing Eqn. (12) b Uncertainty associated with Reliability
Eqgn. (10), which gives System reliability as computed by Eqn. (14) can yield the
s Mo + 1 same value for different sets &f,, Rz, andR,,. For example,
P(X(0) = alD(N)) = T3 (13)  consider two scenarios.

1 Scenario 1:R, = Rg = 0.5, and R, = 0
S|m|larly, P(X(0) = BID(N)) = 55 and P(X(0) =  Scenario 2:R, = Rs = 0.3, and R, = 0.4

u|D(N)) = ’JL(;:; These equations are the expressions f@or both scenarios, the optimistic decision reliabilitygagen




TABLE Il R .. C
RELIABILITY -ENTROPY TUPLE N=1000 A Optl mistic Decision Rellablllty: |nstantaneous and Average

_ In Fig. 2, we plot both the instantaneous and average
Sce{'ar'o g”g g’g 56 fg 1EOSO decision reliability for the optimistic reliability modekhen
9 03103104l 05 | 157 the adversary launches attacks wif) = 0.5. We observe
3 02 )| 04]04]033] 151 that the decision reliability fluctuates over time. As expec
with sufficient observations, the moving average of deaisio
reliability converges to a steady state reliability equal + P,
by Eqgn. (14) is 0.5 as shown in Table Il. It can be notewhich in this case is 0.5.
that though scenario 2 has high&y, than scenario 119
for both are the same. However, intuitively we ought to trust
scenario 1 more than scenario 2 because more certain decisio
have been made whe, is less. We know that higher values
of R, reduces the chances of being closer to the real value
of reliability. As shown in the two scenarios, the optingsti
reliability can yield the same value for different sets ®f,
Rg, and R,
In order to illustrate the uncertainty associated with f)g
we use entropy which is a measure of uncertainty inherent in
a system. Usually, entropy of a system uses the steady state o 100 200 800 400 500 600 700
probabilities that the system could be in. We define the egtro rime stet

of the decision reliability as: Fig. 2. Instantaneous and average decision reliabilith iflf = 0.50 and
Pdet = 08

—— Instantaneous Reliability
= = = Moving Average Reliability

I !
IIl 1‘” “”l\“ lil |N “i
i

- ,;,‘!., wuml iy
[ "i‘m' il wlllm’ll l h “ll i

Optimistic Reliability

E; = —[R,loga(Ry) + Rgloga(Rg) + Ryuloga(R,)]  (16)

The entropy,E;, captures the uncertainty which is showr. Decision Reliability and Entropy

in Table. Il. Scenario 1 withkz, = 0 has an uncertainty |, fig. 3, we plot steady state decision reliability with

measure of 0.69 which is lower than scenario 2 withs. increasingP, and for two different values oP,.;. The plots

Thus, the reliability of scenario 1 can be trusted more thapoy a steady decrease of decision reliability valuesHgy

that of scenario 2. 0.5 and 0.9. Recall, with differer,., the values of average
Now, let us consider scenario 3 which has the sdtpeas decision reliability may differ but the relation betweetf

of scenario 2; howeveiizg is higher than scenario 2. Henceand P, does not change with change iRy, unlike RC.

scenario 3 has lesser reliability value than scenario ZeSinThjs is because inputs chosen by the adversary is uniformly

scenario 2 has been established to be less trustworthy thgRdom. The conservative reliabilify:, also falls linearly with

1, we can also verify that fronR?; of scenario 3 is also jncreasingP,, but the slope or rate of this change varies for

less than that of scenario 1. However, these arguments hgld different values of?,.;. This is because the conservative

true only when at least 50% of the observations are accurgigdel does not account for the undecided ones. Hence a lower

observations, i.e, < 0.5. This is a reasonable assumptionalue of P,., yields a lower reliability value than a higher
as it is impractical to have a detection mechanism whiGjue of P,.,.

cannot detect or decide majority of the time. Furthermore, Fig. 4 shows the entropy values of the system
under the same set df;.;. This shows that a system with
V. SIMULATION MODEL AND RESULTS higher P,;.; has a lower uncertainty on the decision reliability

estimate for all values of?,. This is useful when we use

We simulate a generic centralized system with 100 corpptimistic system reliability which uses a fraction of unitked
ponents. Inputs from all components are monitored by ames to contribute to the final reliability value.
imperfect monitoring mechanism that produces three plessib
outcomes. The probability of detectio);.,, is varied to
capture its effects on decision reliability.

An adversary attacks and compromises different sets of
inputs over time. The number of inputs compromised vary
over time slot; although the long-term average of the number
of inputs compromised, denoted 3, remains the same. We
study the decision reliability for different values &f,, and
plot instantaneous and moving average of decision reiiabil
We first present the results for an optimistic system and then Probabiliy of Attack Probability of Attack
for a more conservative system.

Fig. 3. Optimistic and Conservative Reliability oveY, for different P;.;
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Fig. 4. Entropy over different values df,

In Fig. 5, we show how entropy changes with increasing
probability of attack. As time evolves ang,;., improves,
the uncertainty (i.e., entropy) associated with the denisi
reliability decreases indicating increased confidence han t
reliability values.

C. Decision Reliability with Time Variant P,

Some adversaries may choose to attack with short-term low
or high attack probability; however, maintaining the laegm
average value of?,. For example, an adversary attacks less
initially conserving its attack resources for future anergu-
ally attacking more (under favorable conditions). In Figne

investigate how the proposed model behaves in such cases. We

consider an adversary witR, = 0.5. The first 500 slots are
attacked less and next 500 slots are compensated by atiackin
more. We observe that decision reliability progressivetyas
towards the expected reliability, although no strict cageace
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VI. CONCLUSIONS

on the decision reliability is achieved. In this paper, we presented a Bayesian inference based
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Fig. 5. Conservative decision entropy with incremental éase ofP.;

model to translate multinomial observations for any voting
system under imperfect monitoring. We computed the poste-
rior belief for the decision reliability based on the number
of compromised, not compromised, and undecided inputs.
We proposed two models for decision reliability— optindsti
and conservative. Through simulation experiments, we skdow
how the decision reliability changes with attack probayili
which also affects the detection accuracy of the underlying
monitoring mechanism. Using entropy, we provided a way to
evaluate the certainty of the reliability calculation. &lig, we
showed how the decision reliability decreases when thelatta
probability increases.
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