
Unsafe Events Detection in Smart Water Meter
Infrastructure via Noise-Resilient Learning

*Ayanfeoluwa Oluyomi†, Sahar Abedzadeh‡, Shameek Bhattacharjee‡, and Sajal K. Das†
†Dept. of Computer Science, Missouri University of Science and Technology, Rolla, MO 69401, USA

‡Dept. of Computer Science, Western Michigan University, Kalamazoo, MI 49008, USA
E-mail: {aoonzb, sdas}@mst.edu, {sahar.abedzadeh, shameek.bhattacharjee}@wmich.edu

Abstract—Residential smart water meters (SWMs) collect real-
time water consumption data, enabling automated billing and
peak period forecasting. The presence of unsafe events is typically
detected via deviations from the benign profile of water usage.
However, profiling the benign behavior is non-trivial for large-
scale SWM networks because once deployed, the collected data
already contain those events, biasing the benign profile. To
address this challenge, we propose a real-time data-driven unsafe
event detection framework for city-scale SWM networks that
automatically learns the profile of benign behavior of water
usage. Specifically, we first propose an optimal clustering of
SWMs based on the recognition of residential similarity water
usage to divide the SWM network infrastructure into clusters.
Then we propose a mathematical invariant based on the absolute
difference between two generalized means – one with positive and
the other with negative order. Next, we propose a robust threshold
learning approach utilizing a modified Hampel loss function that
learns the robust detection thresholds even in the presence of
unsafe events. Finally, we validated our proposed framework
using a dataset of 1,099 SWMs over 2.5 years. Results show
that our model detects unsafe events in the test set, even while
learning from the training data with unlabeled unsafe events.

Index Terms—Resilient Machine Learning, Anomaly Detection,
Smart Water Distribution, Smart Living CPS

I. INTRODUCTION

A water distribution network is a complex network of pipes
and joints designed to ensure safe and dependable treated
water delivery from the source tanks to the end consumers.
However, the reliability can be jeopardized due to various
unsafe events, affecting the safety and consistency of water
supply. Installing smart water meters (SWMs) on individual
households enables visibility of the entire water distribution
network and supports key functions, such as automated billing
and usage tracking. Specifically, the SWMs measure hourly
water consumption for every house, and relay the readings to
a data concentrator receiving the measurements from SWMs
via wireless connection. Subsequently, such data are forwarded
to the utility cloud (see Figure 1).

Motivation: Unsafe events in the context of this paper
include SWM malfunctions and/or consequent negative values,
large-scale radio frequency (RF) connectivity issues due to
network device malfunctions, SWM software issues, water
theft, or actual negative flow (i.e., water flowing to the opposite
direction). Automated and real-time detection of such unsafe

*A major part of the work was done when A. Oluyomi visited S.
Bhattacharjee at Western Michigan University in 2023.

events in a city-scale SWM network is an open problem. This
motivates our innovative work.

Since a typical city has hundreds of thousands of SWMs,
running a per-meter level anomaly detection technique at the
utility head-end will require significant computational and
memory resources, which may not be scalable for large cities.
Moreover, a human operator cannot possibly monitor the
health of each SWM. This necessitates a lightweight wide-area
anomaly detection technique at a coarse-grained resolution
(cluster or zone-level) in real-time without manual supervision.

Fig. 1: Water usage data flow

A. Unsafe Events and Impacts in Consumer SWM Networks

Let us first enumerate possible unsafe events in the SWM
networks and their impacts on the utilities and customers.

Water Leaks: This event shows up as higher water con-
sumption readings from a group of smart meters. While
high water usage can also be due to legitimate events (e.g.,
irrigation, gardening, or use of multiple water outlets), the
ease of detecting leaks depends on the severity of the damage
and the underlying causes, such as aging household piping,
sabotage of pipes connecting a group of households, and
natural disasters. Therefore, real-time detection of water leaks
is highly important to the public water utilities. This is because
undetected water leaks not only pose a financial burden on
the consumers, resulting in higher bills, but also a reputation
loss for the utility. Moreover, unaccounted water usage (due to
water theft or leaks) leads to revenue loss and hence financial
sustainability. The infrastructure (mainly pipes) will also be
progressively damaged if the leak is not detected or handled
early enough.

Backward Flow of Water: Backward flow or backflow oc-
curs when the water pressure drops suddenly or completely
fails, thus allowing contaminated water, liquids, or gases to

flow back into the clean water supply. Negative water pressure
can be caused by a sudden change in the flow velocity, which
can be due to the closing or opening of valves, starting or
stopping a pump, or changes in the pipe geometry. Such an
event shows up as negative water consumption from various
smart water meters. Heavy rainfall can cause flooding, which
can form puddles around the sprinkler devices on lawns/farms.
During a pressure reversal, the contaminated water containing
fertilizer, pesticides, etc. can be drawn back into the clean
water supply line [8], leading to a public health concern. The
dataset documentation in [4] provides further explanations for
negative readings (e.g., organized water theft and SWM faults),
which need to be detected promptly.

Sustained Missing Data: Our analysis of the SWM dataset
revealed that many SWMs did not send water consumption
data for several hours; then a single large consumption read-
ing was sent corresponding to the total consumption during
the outage. Such events can be due to SWM malfunctions,
intermittent RF connectivity, and third-party SWM software
issues, among others. Long periods of missing data impact
the water utility operations by impeding the accuracy of data-
driven processes (e.g., forecasting, billing, water conservation
techniques), the service quality, and operational efficiency.

B. Aims, Objectives, and Challenges

To detect unsafe events in SWMs, we used hourly-recorded
water consumption data from 1,099 houses [3]. Since different
houses exhibit distinct water consumption patterns, our first
objective is to design a clustering algorithm that can precisely
identify and group houses based on the inter-dependence of
such patterns. Water consumption in a household depends on
multiple factors, such as the number of occupants, the nature
of their employment, and individual preferences, which make
the clustering method non-trivial. However, once such clusters
are identified, we run an instance of the anomaly detection
technique on the aggregate raw data from the entire cluster,
ensuring the scalability of unsafe event detection. Once the
relevant “cluster” originating the anomaly is identified, the
utility can opportunistically invoke a more costly per-meter
anomaly detection technique or a manual inspection only for
those houses belonging to that identified cluster.

The most important technical challenge is the presence of
unsafe events in the training dataset collected from actual
deployments as this complicates the accurate characterization
of the benign profile of any smart living cyber-physical system
(CPS) such as the SWM networks. Hence, the objective is to
automatically learn the benign profile of the operation while
learning the thresholds of benign operation characterizing the
event detection criterion, even with the inclusion of unsafe
events in the training dataset. Our research contributions aim
to address these unique objectives and challenges.

C. Contributions of This Paper

This paper proposes a novel time-series event detection
framework for large-scale water distribution networks. The
major contributions are summarized below.

(1) We design a clustering algorithm that partitions the
residential smart water meters into smaller clusters using sim-
ilarities in their consumption behavior. Creating such clusters,
where the data in a cluster are highly positively correlated with
each other, maximizes the invariant of the anomaly detection
metric characterizing the benign behavior. Our approach uses
mutual information that measures how much water meters are
connected to each other owing to their complex, non-linear
relationships. A graph-theoretic technique is used to partition
the houses into clusters with strong correlations. The clustering
approach promotes decentralized cluster-wise implementation,
enabling straightforward identification of the cluster where an
unsafe event has occurred. Subsequently, each smart water
meter data within that cluster can be inspected individually.

(2) We propose an unsafe event detection model that lever-
ages the absolute difference between the negative and positive
orders of the generalized mean. Our findings demonstrate
that this invariant provides optimal sensitivity to changes
induced by unsafe events while remaining insensitive to benign
fluctuations. The cyclo-stationarity of the human behavior in
water consumption ensures the effectiveness of this approach.

(3) We develop a robust method to learn the thresholds of
benign (normal) operations even when unsafe events occur
during the training process. This method uses the Hampel
three-part estimator to automatically learn unbiased thresholds
that characterize normal behavior, even when unsafe events
affect the invariant’s structure during training. This contributes
to the model’s ability to distinguish normal behaviors from
unsafe events in the test and deployment stage.

(4) We validate the proposed framework using the SWM
dataset from Alicante, Spain. Experimental results demonstrate
that our framework effectively detects unsafe events. The
performance is evaluated by comparing its decisions with
manually labeled water usage data, serving as ground truth.

D. Design Rationale and Theoretical Intuition

Before proceeding further, we outline the design rationale
and theoretical intuition to shed light on the essential proper-
ties required for our framework to be effective in any CPS.

(a) The framework is relevant to smart living CPS appli-
cations, where the data from the physical world is readily
affected by human behaviors, not just by the laws of physics.
The clustering method combined with the invariant helps
abstract this randomness into a time-invariant latent space.

(b) Our invariant design is such that it ameliorates the
need to manually remove the negative and zero values before
learning the benign profile essential in the existing time series
invariant using Pythagorean Means [12]. Additionally, our pro-
posed invariant contains properties that cause deviations under
unsafe events due to the asymmetry of convexity properties in
the generalized means with a negative order, as opposed to the
generalized means computed with a positive order.

(c) The robust threshold learning involves a ‘modified’
Hampel loss function (a composite loss function) rather than
the common practice of a regular loss function, which gives
completely different fitness values depending on the error. This

explains why the learnt threshold is accurate in presence of un-
labeled, unsafe events. Typically the inputs to a loss function in
a regression-type learning problem are directly the regression
errors. However, since the reduction of false alarms is the
principal design challenge in time-series anomaly detection,
we add more weights to the regression errors on moderately
outlying points rather than in-lying points before passing it
to the Hampel loss function that allows the threshold learner
to be not too conservative. This explains good performance in
false alarms, unlike the usual outcome where the use of robust
loss functions comes at the cost of increased false positives.

(d) Our proposed framework will have less success if a
positive covariance structure is absent (affecting the invariant
stability) under feasible spatio-temporal granularities, and if a
wide sense cyclo-stationarity is not observed in the extracted
time-series invariant (affecting the safe margin generation).

The rest of the paper is organized as follows. The clustering
algorithm is proposed in Section II along with the model of
water consumption behavior. Section III describes the anomaly
detection framework while IV presents the experimental re-
sults. Section V offers conclusions.

II. PROPOSED CLUSTERING ALGORITHM

This section explores the need for clustering and detail
its design, implementation, approach, and execution process.
The clustering is done on a subset of data that are hand
cleaned, and this process is done only once. Once the clusters
are established, our invariant detection metric is calculated
separately per cluster using raw uncleaned data as collected
from the actual SWM from the wild. This reflects the reality of
the problem of training to learn the profile of benign behavior
in the presence of unlabeled unsafe events without human su-
pervision. Then the thresholds of benign behavior are learned
separately for each cluster. Next, in the test set, the same
invariant is applied and compared with the thresholds learned
during the training stage that specifies benign operation. If the
invariant in the test violates the learned threshold, the proposed
framework declares an unsafe event, else it infers benign.
A. Understanding Water Consumption Patterns

We used the Hellenic Data Service [3] containing hourly
water usage data from 1,099 residential houses over 2 years
and 5 months (January 2015 – May 2017). We used a 60-20-20
split for the training, cross-validation, and testing sets.

Fig. 2 shows that the mean water usage for corresponding
hours of the entire training set is highly unpredictable. Hence,
popular methods such as the cumulative sum (CUSUM), which
requires prior knowledge of an in-control mean serving as
a benign baseline, fail to solve this problem (see the proof
in Sec. IV-D). As illustrated in Fig. 2, each line represents
the average daily usage trend for an individual house (only
30 houses are displayed for brevity) over the hours of a
day. Furthermore, it is important to highlight that the actual
mean usage within a specific hour of different days exhibits
substantial variations. Consequently, these fluctuations sig-
nificantly influence the traditional metrics like the moving
averages and simple means. Hence, the need for anomaly

detection metrics that consider these variations, while profiling
the benign behavior and establishing a detection criterion.

Fig. 2: Mean of water usage for corresponding hours

B. Residency Similarity Recognition (RSR) Algorithm

We observed a notable correlated increase in water usage,
particularly during the early hours of the day across most
houses, indicating the period when most household occupants
get ready for the day. Similarly, the correlated drops in usage
during the night time shows correlated behaviors in general.

1) Need for Clustering: Even under benign conditions,
human behaviors are complex and non-linear. We need to
identify subgroups where the correlation is high and treat them
as single points of observation for visibility of the entire SWM
network. This is why the clustering makes sense. The reason
behind considering correlation as the basis for clustering is that
this is a required property to provide stability to the invariant
metric inspired by our work [1]. We showed that the ratio of
Pythagorean means (e.g., harmonic mean to arithmetic mean
ratio) gives a stationary time series if the data comes from a
network of highly correlated random variables.

The strength of the positive correlation between water
usage of houses becomes low when considering a randomly
selected section of the city or the entire city. Low correlation
adversely affects the effectiveness of the anomaly detection
model because the derived invariant is not stable under be-
nign conditions. Hence, clustering smart meters based on the
temporal information led to an intelligent clustering algorithm,
called the Residency Similarity Recognition (RSR) algorithm.

The primary objective of the RSR approach is to partition
the houses into highly correlated/similar clusters. We use
mutual information (MI) to capture similarity between houses
due to non-linear dependence between the data coming from
different meters. The RSR also enhances the robustness of
the detection model by improving the invariant’s stationarity
(see Section III-A) and facilitates decentralized monitoring and
localization of unsafe events to specific clusters.

2) Measuring Dependence between Meters: We use mu-
tual information [6] to determine the dependencies among
SWM meters. The MI quantifies the knowledge gained about
one variable given another variable’s value. Unlike popular
correlation techniques such as Pearson correlation [17], the
MI captures both non-linear and linear dependencies between
variables, enabling a better understanding of smart living CPS,
such as SWM networks. We calculate the MI as:

I(Wi;Wj) =

∫ ∫
p(wi, wj) log

p(wi, wj)

p(wi)p(wj)
dwidwj (1)

where wi and wj are water usage for houses i and j over
an hourly time window and I(Wi;Wj) is the measure of
MI between two house water usage wi and wj . The MI
between any two variables is symmetric. After measuring the
MI between every pair of houses, we use a graph-theoretic
approach to obtain the correlated clusters. An MI close to
zero indicates independence between variables while higher
MI values indicate stronger mutual dependency.

3) Formulation as a Graph Problem: Assuming (theoret-
ically) every house may have some dependencies with other
houses, the initial formulation is an undirected complete graph,
G = (V,E), where v ∈ V is the set of vertices (i.e., SWMs)
and the e ∈ E is the set of edges denoting the dependency
between two vertices. The MI value, i.e., we = I(Wi;Wj)
between any pair of vertices is the edge weight denoting the
strength of that dependency.

The goal is to find a set of correlated clusters such that the
members within the cluster high dependency. Therefore, we
assign a minimum acceptable MI value wcut such that only
edges with we > wcut are feasible, and the rest of the edges
are deleted. Note that wcut is a crucial hyperparameter, since a
low wcut results in a graph with more edges with low weights.
Thus houses having low dependencies/correlations with other
houses will be clustered together, which will weaken the
invariant of the detection metric for that cluster. A weak
invariant under benign conditions is not conducive to the
detection of unsafe events or successful profiling of the benign
behavior of a cluster. Conversely, a high wcut will remove
a lot of edges with considerable dependency strengths. This
will cause a significant number of SWMs to be not included
in any of the clusters. Section II-C discusses the method
employed to obtain the optimal wcut along with N , which
is the maximum allowable number of houses for a single
cluster. Next, we define some key terms and then describe
the clustering algorithm.

A Cluster ck is the k-th cluster containing a set of vertices
with high similarity of water usage. The clusters are formed by
incrementally adding vertices one at a time so as to maximize
the edge weight we of a cluster. While forming a cluster, the
current collection of vertices is the candidate cluster c. We
need the following definitions inspired from [5] to understand
the clustering.

Volume is defined as the sum of all edge weights we inside
a candidate cluster c, where each edge e = (vi, vj) ∈ E has
both vi and vj in c, Thus,

vol(c) =
∑

vi,vj∈c
we (2)

Sumcut is the sum of weights of the edges that connect c
to the rest of the graph. Each edge e = (vi, vi′) ∈ E has one
vertex vi inside c and the other vertex vi′ outside c. Thus,

sumcut(c) =
∑

vi,vi′ |vi∈c∧v′
i /∈c

wei,i′ (3)

4) Description of Clustering Algorithm: Algorithm 1 re-
turns a set C of clusters. The algorithm starts by verifying that

Algorithm 1: Algorithm for Clustering Houses
Data: Edge-list (ei,j = {Vi, Vj , wei,j})
Result: Clusters C = c1, . . . , ck

1 while edgelist ̸= ∅ do
2 Select random ei,j such that ei,j ∈ edgelist;
3 c← vi, vj ;
4 vol(c) = wei,j ;
5 sumcut(c) =

∑
vi,v

′
i|vi∈c∧v′

i /∈c wei,i′ ;
6 edgelist\ = {(vi, vj)};
7 while vol(c) ≤ sumcut(c) and count(c) ≤ N do
8 Neighbors(c)← {ei,i′ | (vi, v′i)};
9 // vi ∈ c, and v′i /∈ c

10 sumcut(c) =
∑

ei,i′∈Neighbors(c) wei,i′ ;
11 // Sum of edge weights of vertices

that connect c to the rest of the
graph

12 vi′+1 = max[wei,i′ suchthat ei,i′ ∈ Neighbors(c)];
13 c← vi′+1;
14 vol(c)+ = wei,i′+1

;
15 edgelist\ = vi′+1;

end
16 return ck;
17 remove all (v, e) ∈ c from edgelist;

end
18 return C = c1, . . . , ck;

Fig. 3: A cluster formulation with RSR

the edgelist is not empty (line 1). Using Fig. 3 as an example,
all edges in Fig. 3a have we > wcut. The initial edge v1, v2 is
randomly selected from the edge list to establish the process of
building the first cluster that contains vertices v1 and v2 (lines
2 and 3). Then the algorithm calculates the candidate cluster’s
vol(c) and sumcut(c) (lines 4 and 5). In Fig. 3b, vol(c) is
we of edge v1v2, while sumcut(c) is the sum of we for edges
v1v4, v1v5, v2v5, and v2v3. Vertices v1, v2 are removed from
the edgelist to prevent duplication (line 6).

The algorithm proceeds iteratively from lines 7 to 15 while
vol(c) ≤ sumcut(c) and the number of vertices, count(c)
within the candidate cluster c does not exceed N . Here,
Neighbors(c) is the set of all vertices that connect the
candidate cluster to the rest of the graph (line 8). Then, we
calculate the sum of we of all edges that connect the candidate
cluster to the rest of the graph, i.e., the sum of all we in
Neighbors(c) (line 10).

Next, the algorithm selects the edge with the highest we

from Neighbors(c) (line 12), and includes the adjacent vertex
vi′+1 (currently outside the candidate cluster) into that candi-
date cluster (line 13). Then, we of edge (vi, vi′+1) is added
to vol(c) (line 14). This is illustrated in Fig. 3b and Fig. 3c,

where vertex v5 is included in the cluster since the edge v1v5
has the highest we. Then vol(c) is calculated as the sum of
we for the edges v1v5 and v1v2.

The sumcut(c) is updated as the sum of we for edges v1v4,
v2v3, and v5v6. Subsequently, all rows where vertex vi′+1

and all its adjacent vertices are removed from the edgelist to
prevent duplication (line 15). Once any of the two conditions
on line 7 is violated, the algorithm returns cluster ck along
with the vertices formed in the process. For the example in
Fig. 3c, vertices v1, v2, v5 form the first cluster since the sum
of we of v1v2 and v1v5 is greater than the sum of v1v4,
v2v3, and v5v6. The vertices and adjacent vertices are removed
from the edgelist (line 17) and the iterative process continues.
Once the edge list becomes empty, the set C consisting of
all c1, ..., ck clusters formed is returned (line 18) and the
algorithm terminates.

5) Using the RSR Algorithm with Cleaned Data: The RSR
algorithm aims to create clusters that contain houses with
highly correlated water usage patterns. We employ a hand-
cleaned version of the dataset and apply the RSR algorithm
to create a one-time cluster formation. In a real-life scenario,
the clustering only has to be done only once in a few years
to consider water patterns that might have changed over the
years. After the clusters are formed, the raw uncleaned data
from the corresponding SWMs within each cluster is used
in the rest of this paper. The use of an uncleaned version
of the data preserves all the challenges in the problem of
‘automatically’ learning the profile of benign behavior in the
presence of unsafe events from a real smart living CPS. The
benign profile and its thresholds, if learned accurately, can be
used for detecting unsafe events in the deployment/test set. The
process of cleaning the data is explained in Appendix VI-A.

C. Hyperparameter Learning for the RSR Algorithm

We derive the optimal wcut and N by finding which
combination of the candidate w∗cut and N∗ maximizes the
strength of stationarity in the time-series data for all the
clusters. To quantify the strength of stationarity, we use an
Augmented Dickey-Fuller (ADF) [11] test with the time-
series data ad(tϕ)

ck = |HM(tϕ)
ck − AM(tϕ)

ck | (see Ap-
pendix VI-B for details). Here ad(tϕ)

ck is obtained using an
invariant proposed in our earlier work [2], which however fails
under uncleaned SWM data containing unsafe events, thereby
reducing the detection accuracy.

Now, let ∆yckt be the ADF test statistics for a cluster ck
and ∆avg(C) the mean of ∆yckt produced for a given set C.
Furthermore, let Υ(C ′) be the number of houses that do not
belong to any cluster ck (after C has been obtained) because
of their low edge weight to adjacent houses.

By jointly minimizing a weighted sum, RSRmin =
w∆∆avg(C) + wΥΥ(C ′), we obtain the optimal values of
wcut and N (see Algorithm 2). Here, it is crucial to note that
w∆ > wΥ, since we want more importance to be placed on
∆avg(C). This choice reflects the importance of stationarity
over the number of houses covered in our optimization process.

Algorithm 2: RSR Hyperparameter Learning
Result: N , wcut

1 for N∗, w∗
cut do

for w∗
∆, w∗

Υ do
2 Obtain set C with Algorithm 1;
3 ∆avg(C) = mean(∆y

ck
t);

4 Υ(C′) = number of houses not clustered;
5 RSRmin← w∆.∆avg(C) + wΥ.Υ(C′)

end
end

6 N,wcut, w∆, wΥ = argminN∗,w∗
cut,w

∗
∆,w∗

Υ
(RSRmin);

For each combination of w∗cut and N∗, a unique set of
clusters C = c1, ..., ck, is produced, and we calculate the
RSRmin for that set C. Finally, we identify the global minima
of RSRmin to determine the optimal values of wcut = 0.061,
N = 80, w∆ = 0.99, and wΥ = 0.01. The optimization
process involves varying w∗cut from 0.001 to 0.205 with a step
size of 0.005, and N∗ from 50 to 100 with a step size of 5 to
obtain the optimal values for wcut and N .

Clustering with Optimal Hyperparameters: Using the opti-
mal values, we found 14 clusters, out of which the last 3
clusters had only two houses, making the event detection
trivial. Hence, we report the performance on the remaining
11 clusters. We provide cluster-wise test statistics results in
Appendix VI-C. We also presented a comparison of the perfor-
mance of RSR algorithm with other conventional algorithms
in Appendix VI-D.

III. UNSAFE EVENT DETECTION METHOD

In this section, we first present our novel invariant design,
followed by a method that learns a robust detection threshold
that can successfully detect unsafe events in the test set, and
finally the details of optimizing the hyperparameters of the
invariant design and the detection threshold learning method.

A. Characterizing Benign Invariant

As outlined in section II, the clustering process produces
clusters that maximize the correlation between houses included
within the cluster. In this section, the uncleaned raw data
collected from the wild are used for each house.

Consider a cluster ck comprising n(ck) houses. Next, we
compute an invariant metric ADck(tϕ) for each cluster ck at
every time slot tϕ, where ϕ represents the hour of the day
such that ϕ ∈ {1, 24}. For the rest of this section, we remove
the symbol ck from all notations/equations, since the detection
model runs per cluster ck in the same way.

Let wi(tϕ) be the water usage recorded by the i-th SWM at
the time slot t corresponding to the ϕ hour of the day. Then
the Generalized Mean (GM) value from all wi(tϕ) from n
meters in the cluster can be calculated as:

GM (p)(tϕ) =

(
1

n

n∑
i=1

(
wi(tϕ)

)p) 1
p

(4)

where the parameter p ∈ R denotes the order of the GM
statistic. Instead of GM, we propose a new AD(tϕ) invariant,

defined as the absolute difference between the two generalized
mean values GMp−

(tϕ) and GMp+

(tϕ), written as:

AD(tϕ) = |GMp−(tϕ)−GMp+(tϕ)| (5)

such that the first term GMp−
(tϕ) has a strictly negative order

parameter such that p− ∈ R− \ −1, while the other term
GMp+

(tϕ) strictly has a positive order of p, where p+ ∈ R+.
This equation can be expanded into the following:

AD(tϕ) =

∣∣∣∣∣∣∣∣
 1

n

n∑
i=1

(
wi(tϕ)

)p− 1
p−

−

 1

n

n∑
i=1

(
wi(tϕ)

)p+ 1
p+

∣∣∣∣∣∣∣∣ (6)

The orders p+ and p− is chosen by hyperparameter tuning
such that it magnifies deviations during unsafe events. The
GMp−1

i.e., HM , do not exist under zero and negative values,
and hence is not a feasible value of p−. An explanation is given
in the appendix VI-E, validating the observed deviation in the
invariant whenever an unsafe event occurs.

The optimization approach employed to determine p+ and
p− is outlined in section III-E. To emphasize the importance
of the clustering algorithm and demonstrate the robustness of
the invariant under benign conditions, we illustrate a scenario
in Fig. 4a displaying the behavior of AD(tϕ) for a cluster
where an unsafe event has taken place in 93rd and 101st hour.
It is clear from Fig. 4a, that our invariant shows a deviation
matching the 93rd and 101st hour. In contrast, in the absence
of clustering and previously proposed invariants (See fig. 4b),
no considerable deviation is present.

(a) AD(tϕ) with our clustering (b) ad(tϕ) without clustering

Fig. 4: Effect of cluster level correlation on the invariance.
However, the AD(tϕ) is also vulnerable to occasional spikes

under benign conditions; which reduces detection confidence.
Hence, we implement a two-tier approach that smoothens
the invariant into a stateless residual space, that provides
the ability to improve detection accuracy while simultane-
ously reducing the false alarms. We generate safe margins
around AD(tϕ) (Sec. III-B), resulting in stateless residuals
(Sec. III-C), which are used to learn the appropriate robust
threshold in Sec. III-D.

B. Safe Margin Generation

Stateless residuals measure the difference between the ex-
pected range of the invariant value at a time window t (called
safe margin) and the actual invariant value at the same time
window. We devise a method for determining the safe margin
through temporal reasoning. This entails calculating certain
indicators of central tendency and variability of the invariant
within a specific temporal context. This idea is based on

obtaining a range that wraps around each hour as seen in
Fig. 5.

1) Expected Value of Invariant per Slot: Given tϕ as a
unique hour slot in a day, the expected value for the invariant
E[AD(tϕ)] is defined as the average of the ADtϕ values
at each corresponding hour tϕ (i.e. same ϕ) over the entire
historical training data, mathematically written as:

E[AD(tϕ)] =

∑
h(ϕ) AD(tϕ)

h(ϕ)
(7)

where h(ϕ) is the total number of data entries corresponding to
the ϕ-th hour of any given day over the historical training set.
In our training dataset h(ϕ) is 522, and since ϕ corresponds to
each hour of the day, we end up with 24 entries of E[AD(tϕ)],
one corresponding to each hour.

2) Safe Range of the Invariant: Now, we determine a safe
margin around each E[AD(tϕ)] (location parameter) by multi-
plying a scalar factor ϵ to the median absolute deviation of all
samples in AD(tϕ) (denoted as MAD(AD(t)) in the training
set regardless of the hour ϕ. We use MAD as a measure
of dispersion around the E[AD(tϕ)] given its robustness to
outliers when compared to the standard deviations. The ϵ
provisions the trade-off that allows for benign fluctuations in
the metric to be tolerated. The resulting safe margin consists of
both the upper margin Γhigh(tϕ) and lower margin Γlow(tϕ)
corresponding to any given hour ϕ of the day:

Γhigh(tϕ) = E[AD(tϕ)] + ϵ.MAD(AD(t)) (8)

Γlow(tϕ) = E[AD(tϕ)]− ϵ.MAD(AD(t)) (9)

Finding the optimal ϵ is critical for minimizing false alarms
(FA) while concurrently controlling missed detection (MD).
This hyperparameter is determined in Section III-E. A large
ϵ results in a wider range of safe margins, leading to more
missed detections (MDs). Conversely, a smaller ϵ yields a
narrower safe margin, resulting in an increase in false alarms.

Figure 5a shows the AD(tϕ) and the safe margins for a test
set cluster after obtaining the safe margins from the training
set. We only show t for 8 days (192 time slots).

(a) AD(tϕ) samples shown continu-
ously for 8 days with the upper and
lower safe margins

(b) Stateless Residual shown contin-
uously for 8 days with the optimal
learnt detection standard limits

Fig. 5: Snapshot of the Detection model.

C. Formation of Stateless Residuals

As defined in Eqn. 10, we compute a signed residual dis-
tance RUC(t) (Residual Under Curve (RUC)) by subtracting
the observed sample AD(tϕ) at time t for a specific hour
ϕ from the corresponding safe margins for that hour i.e. the

Γhigh(tϕ) and Γlow(tϕ). The ϕ was omitted from subsequent
equations because we are not particular about the specific hour
of the day once the RUC(t) has been obtained (See Fig. 5(b)).
Mathematically,

RUC(t) =

AD(tϕ)− Γhigh(tϕ), if AD(tϕ) > Γhigh(tϕ);

AD(tϕ)− Γlow(tϕ), if AD(tϕ) < Γlow(tϕ);

0, otherwise
(10)

Specifically, Eq. 10 can theoretically produce zero (0), positive
or negative values. Formally, the set of positive, negative, and
zero stateless residuals is denoted as RUC+(t), RUC−(t),
and RUC0(t) respectively.

D. Learning Resilient Thresholds of Stateless Residuals

The RUC(t) is obtained from raw uncleaned data that
already contains the unsafe events. Unless painstaking manual
labeling is done to identify and remove RUC(t) samples cor-
responding to the unsafe events/errors, the thresholds identified
by typical regression or even max(residual) [13], will create
biased thresholds that are unable to detect most events.

Therefore, we need to design a robust learning mechanism
that automatically learns a correct event detection threshold
without manual cleaning of abnormal events. Our method
combines weighted regression with Hampel’s three-part re-
descending M-estimator. Formally, to learn the upper threshold
- the inputs to the regression problem are the RUC+(t)
values, the candidate upper threshold hypothesis space is
parameterized by τ+, and the optimal output learned threshold
is τmax. Similarly, to learn the lower threshold, the inputs are
RUC−(t), the candidate threshold hypothesis space is τ−,
and the optimal lower threshold is τmin. Since the method is
the same for learning both thresholds, henceforth we use just
RUC(t) and τ notations for brevity.

The generic regression error is denoted as r(t) = RUC(t)−
τ . Now we make a design change by not providing r(t) as
direct inputs to the Hampel loss function. Instead, we define
s(t) = r(t).λ, where s(t) is a weighted regression error such
that, λ = w2 ∀ r(t) ≥ 0 and λ = w1 ∀ r(t) < 0 and
w1 < w2. As seen in Algorithm 3, r(t) ≥ 0 is checked, then
r(t).w2 is checked with the different a, b, and c values such
that less importance are placed on the bigger outliers, while
the weights provide the trade-off that reduces false alarms.

Hampel’s Three-part Loss Function (HTF): is one of the
robust estimators for outlier resilient learning in the broad class
of M-estimators. The outliers in this context are the presence
of RUC(t) samples triggered by unsafe events already present
in the training data that is used to learn the profile of benign
operation. For weighted regression error s(t), the HTF loss
function is defined as:

ρ(s(t)) =

(s(t))2

2 if |s(t)| ≤ a

a|s(t)| − a2

2 if a < |s(t)| ≤ b

ab− a2

2 +
a(c−b)

2

(
1−

(
c−|s(t)|

c−b

)2
)

, if b < |s(t)| ≤ c

ab− a2

2 +
a(c−b)

2 if |s(t)| > c
(11)

the a, b, and c are different threshold values of the regression
error such that 0 < a ≤ b < c < ∞, such that the

corresponding loss function value depends on the magnitude
of s(t). The HTF has a special property, such that the first-
order partial derivative of the estimator can be customized to
gradually descend to a zero. This unique characteristic ensures
that moderate and large outliers are entirely disregarded while
smaller outliers are not entirely disregarded, thus, significantly
enhancing the efficiency of the re-descending M-estimator by
balancing legitimate benign fluctuations and large RUC(t)
spikes that are due to unsafe events [7].

Why HTF for Training Data: High values of RUC(t) are
less frequent (highly unsafe events) compared to moderate
high values to low values signifying more benign conditions.
Thus, high s(t) should contribute less to the threshold. Thus,
the range |s(t)| ≤ a is assigned the most importance (first part
of Eqn 11). All the other parts of Eqn. 11) are such that they
give decreasing importance with an increase in the s(t). The
next task is to determine the appropriate a, b, and c values in
the HTF function.

Obtaining a, b and c in HTF: The mechanism to find a, b,
and c is data-specific unlike the other parts of the paper.
The K-means clustering algorithm was employed to categorize
the RUC(t) values into distinct clusters. K-means’ ability
to cluster without preconceived assumptions about the data’s
distribution made it an ideal choice for this purpose. The
optimal number of k-means clusters was determined to be
eight, as it effectively separated residual data into 8 clusters.
Since the HTF requires four distinct regions, we need to
combine the clusters into 4 segments demarcated by 3 values
a, b, c. To ensure the robustness of the borders, we computed
the MAD of two preceding and two succeeding clusters.

Obtaining Thresholds τmax and τmin: After determining
the components for HTF, we use algorithm 3 to calculate
the noise resilient upper limit τmax which searches among
RUC+ ≥ 0. To obtain the lower limit τmin, we searched
among RUC < 0, and fig. 5b, shows the learned thresholds.

E. Hyperparameter Optimization

Next, we show how to find the optimal hyperparameters p+,
p−, ϵ for the robust threshold τmax and τmin. As discussed
in Appendix VI-E, when an unsafe event occurs, a significant
deviation in the invariant can be guaranteed with the properties
of the Schur concave and Schur convex. Therefore, we varied
p+ and p− from 1 to 5 and -2 to -6 respectively with a
step size of 0.5, omitting p− = −1 as it corresponds to
Harmonic Mean that does not work with negative readings
(a result of backflow events). We also varied the ϵ from 0
to 4 with a step size of 0.05. We generated different sets
of RUC(t) and learned the threshold τmax and τmin. To
obtain the optimal combination of these hyperparameters, we
formulated the optimization problem as an error minimization
problem aimed at minimizing the number of False Alarms
(FA) and Missed Detection (MD) for each combination of
the parameters such that it minimizes wfa.FA + wmd.MD,
such that wfa = 0.6 and wmd = 0.4 to emphasize the base
rate prior between benign and unsafe events. We assign more
weight to FA as occurrences of unsafe events are infrequent

Algorithm 3: Robust Learning of τmax

Data: [RUCck (t), [τ+], , a, b, c, w1, w2]
Result: τmax

for τ+ do
if r(t) ≥ 0 then

if (|r(t)| · w2) ≤ a then
cost← 1

2 ·
(
(r(t) · w2)2

)
end
else if a < (|r(t)| · w2) ≤ b then

cost← (a · (|r(t)| · w2))− (0.5 · (a2))
end
else if b < (|r(t)| · w2) ≤ c then

cost←
(a ·b)− (0.5 · (a2))+(a · c−b

2) · (1− (
c−(|r(t)|·w2)

c−b)2)

end
else if (|r(t)| · w2) > c then

cost← (a · b)− (0.5 · (a2)) + (a · c−b
2)

end
end
else

if (|r(t)| · w1) ≤ a then
cost← 0.5 ·

(
(|r(t)| · w1)2

)
end
else if a < (|r(t)| · w1) ≤ b then

cost← (a · (|r(t)| · w1))− (0.5 · (a2))
end
else if b < (|r(t)| · w1) ≤ c then

cost←
(a ·b)− (0.5 · (a2))+(a · c−b

2) · (1− (
c−(|r(t)|·w1)

c−b)2)

end
else if (|r(t)| · w1) > c then

cost← (a · b)− (0.5 · (a2)) + (a · c−b
2)

end
end

end
τmax = argminτ+ (cost) ;

compared to benign. The wfa and wmd in our framework
should be modified accordingly for other systems. Algorithm 4
formalizes the hyperparameter learning.

Algorithm 4: Model Hyperparameter Learning
Data: Data clusters
Result: p+, p−, ϵ
for each cluster ck do

for p+, p− do
Calculate AD(tϕ) = |GMp− (tϕ)−GMp+ (tϕ)|;
for ϵ do

Generate Γhigh(tϕ) and Γlow(tϕ) ;
Generate new RUC(t);
Robust learning for τmax and τmin;
error ← wfa.FA + wmd.MD;

end
end
p+
∗ , p−

∗ , ϵ∗ = argminp+,p−,ϵ(error);
end

F. Detection Criterion in Test Set

This section discusses the process of arriving at the pre-
dicted events using the two-tier detection approach.

1) Obtaining RUC(t) in Test Set: Let AD(tc(ϕ) be the
instantaneous current value of our invariant obtained from the
observed water usage in cluster ck at time tϕ in the test set.

Now we use the 24 distinct values of Γhigh(tϕ) (from
Eqn. 8) and Γlow(tϕ) (from Eqn. 9) known from the training
phase, and compare it with the current AD(tc(ϕ) sample
using the Eqn. 10 by replacing AD(tϕ) with AD(tc(ϕ), which
produces the current RUC(tc) sample.

2) Detection Decision: We flag an unsafe event if the RUC
gotten from the safe margins (tier 1) is not within the lower
and upper threshold τmin and τmax respectively. This is given
in equation 12 and shown with figure 5b.

RUC(tc) :

{
∈ [τmin, τmax], No Events;
̸∈ [τmin, τmax], Unsafe Event.

(12)

3) Predicted Events (Z(t)): We obtain the predicted event
at time window t, denoted as Z(t) calculated as the difference
between RUC(tc) and the standard limits τmax and τmin.

Z(t) =

RUC(tc)− τmax, if RUC(tc) > τmax;

RUC(tc)− τmin, if RUC(tc) < τmin;

0, otherwise
(13)

4) Ground Truth Formation: We manually identified the
unsafe events described in section I-A by rigorously studying
the data and referring to available documentation for both
cleaned and uncleaned versions of the data. It should be noted
that the different events explained in Section I-A have two
effects - which is either a large positive reading (+ve Events)
or a negative reading (-ve Events) from one or more SWMs.
For sustained missing data, we observed that a huge positive
reading always follows the missing data, thus, the effect of this
is seen as a moderately large positive number (+ve Events).
To generate a ground truth events dataset Dgt from the raw
data Draw we applied the following rules/conditions to label
the ground truth of events:

ζ(t) =

2 if ∃ i , wi(tϕ) > θh
3 if ∃ i , wi(tϕ) < θl
0 otherwise

(14)

where θh and θl are a certain high water reading threshold
and a certain low water reading threshold respectively, and
ζ(t) is the time-stamped event label. We now discuss how we
determined θh and θl for the SWM application.

Determining θl: Practically speaking, water usage should
be strictly positive, thus, we postulate that any water usage
significantly less than 0 is an unsafe event, hence θl = −1.

Determining θh: Determining the appropriate water usage
per hour is a complex task due to varying water usage per hour,
day, week, and season, as well as household occupants and
building types. Hence to obtain θh, we employ Chebyshev’s
Inequality on cleaned water usage data (the cleaning method is
explained in appendix VI-A). We used a clean dataset because
we can obtain the appropriate standard deviation (σ) and mean
(µ) of the actual water consumption unlike the uncleaned data
that contains large positive numbers (up to 13 million liters),
these values influence the σ which in turn leads to taking larger
step sizes to obtain θh.

Chebyshev’s Inequality is represented as P (|X − µ| ≥
gσ) ≤ 1

g2 , where, X in our context is the water usage, g is
scalar multiplicand of the standard deviation σ. This inequality
provides a reliable means of setting the upper bounds on the
proportion of data that can deviate significantly from the mean.
With this, we calculate θh = µ + gσ, where µ and σ are the
mean and standard deviation of the entire cleaned dataset.

The θh is common for all clusters for the following reason:
When thresholds are calculated on a per-cluster basis, the RSR
algorithm (section II), cluster-specific θh leads to significant
impacts on µ and σ, causing the threshold to shift either to
the far right or far left of the distribution. High water usage
clusters can cause the threshold to shift to the far right, leading
to the categorization of unsafe events as benign. Conversely,
low water usage clusters can cause the threshold to shift to the
left, labeling benign water usage as unsafe events. To address
these challenges, the entire dataset is used to determine the
threshold, hence introducing noise and ensuring the threshold
value, θh, is more robust in dealing with these two extremes.

We obtain the value of g = 30 while calculating θh, which
translated into having only 0.11% of the data outside of the
bound. From this, we obtained θh = 740.7. We validated θh
with real-world statistics [9] of water usage per hour and we
observe that θh is higher than the expected water usage per
hour. Thus, if the water usage in an hour t from house i is
greater than 740.6529 liters, we consider it an unsafe event.

Fig. 6: Ground Truth vs Z(t) for test data
Illustration: Figure 6 shows a comparison of predicted

events Z(t) (lower plot) with the ground truth ζ(t) (upper
plot) where levels 2 and 3 correspond to events that lead to
positive and negative outliers respectively. Thus, using Z(t)
helps us understand what kind of event might have happened.

G. Performance Evaluation Metrics

Apart from false alarm and missed detection counts and
rates per cluster, we report a less used but NIST recom-
mended performance metric for cyber-physical systems, called
Expected Time Between False Alarms, defined as: E(Tfa) =∑nFA

i=1 TE

nFA , where nFA is the total number of false alarms,
and TE is the duration between two consecutive false alarms.
This metric provides valuable insights into the occurrence and
spacing between false alarms [13].

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

We used residential household water usage data collected
by Hellenic Data Service [3]. The dataset contains water
usage from 1,099 houses from Jan 2015 - May 2017. We
formed a training set of 521 days (Jan 2015 - June 2016),
a cross-validation set of 174 days (May 2016 - Nov 2016)
for hyperparameter selection, and a test set of 174 days (Nov.

2016 - May 2017) for performance evaluation, all containing
uncleaned raw data.

As per Section II-B, we used the clustering approach to
divide the houses into 11 clusters. For each cluster, we
identified optimal hyperparameters using the cross-validation
set with Algorithm 4. We fit the optimal hyperparameters
into our model with the training data to extract optimal the
RUCck(t) set per cluster, which is then fed as input to
Algorithm 3 to obtain optimal thresholds τ ckmax and τ ckmin

for each cluster ck. The optimal hyperparameters and the
thresholds are then applied to the test set. We calculated the
invariant ADck(tcϕ) for each cluster by using the optimal p+
and p− for that cluster (Sec III-A). Then we use the safe
margin gotten during the training using the optimal ϵ and
compare the invariant ADck(tcϕ) against the safe margins for
each cluster to obtain the RUC(tc). We compare RUC(tc)
against the robust thresholds using Eqn. 12 to represent the
decision taken by our method on unsafe events. For the sake
of visualization, we use the Eqn. 13 to compare the predicted
unsafe events against the ground truth events.

B. Overall Performance with Learnt Hyperparameters
To assess the performance of our anomaly detection ap-

proach, we applied the learned p−, p+, ϵ, τmax, and τmin to each
of the 11 clusters. The results are presented in table I, where
ck represents the cluster name,

∑
ζ(t) is the total number

of ground truth unsafe events gotten from the raw dataset,∑
Z(t) is the total number of unsafe events our model was

able to predict, the missed detection and false alarms are
denoted as MD and FA respectively.

TABLE I: Experimental Results for the 11 Clusters
ck

∑
ζ(t)

∑
Z(t) MD FA E(Tfa)(Hours)

1 43 38 5 6 443.0
2 45 35 0 5 693.4
3 72 70 2 8 320.75
4 45 43 2 7 231.57
5 37 35 2 2 1307.0
6 83 72 11 6 504.83
7 37 32 5 3 824.67
8 213 213 0 6 543.67
9 45 40 5 4 773.25

10 51 46 5 1 4175.0
11 43 41 2 4 713.5

Total 704 665 39 52

From Table I, we observe that over a testing time of 4,175
hours across all clusters- 94.5% of the unsafe events were
detected, while the overall false alarm rate was 1.4% and
the missed detection rate was 5.5%. Table I also provides the
cluster-wise results for MD, FA,

∑
Z(t) and

∑
ζ(t).

Furthermore, we give the average expected time between
consecutive false alarms. The worst E(Tfa) is 231.57 hours
for cluster 4, implying a FA once every 9 days, while cluster
10 has the highest E(Tfa) with a FA expected only once
every 174 days. The average E(Tfa) across all clusters in
957.3 hours. In summary, our anomaly detection approach
exhibits accuracy in the identification of unsafe events in SWM
infrastructure based on learned benign behavioral models,
while maintaining a low incidence of FA. While the false
alarm rate is low, more research is needed to further reduce
the frequency of false alarms.

(a) ROC curve (b) Mean E(Tfa)

Fig. 7: Evaluating Sensitivity of Performance

C. Performance Sensitivity Analysis

Here we show sensitivity analysis using ϵ as a free param-
eter, examining its impact on true positive rate (TPR), false-
positive rate (FPR), and E(Tfa).

Figure 7a presents the average Receiver Operating Charac-
teristic (ROC) curve across the 11 clusters, serving as a robust
indicator of our framework’s performance. Notably, at a 98%
TPR, the FPR remains impressively low, standing at just 0.037.
This low FPR is crucial to Cyber-Physical Systems (CPS).
This is because of the infrequent occurrences of events, the
cost of false alarms is high. Specifically, Figure 7b provides
insight into the expected time gap between two successive
false alarms across varying values of ϵ.

D. Comparison with Existing Works

Now, we compare our proposed approach with four existing
methods for anomaly detection: (i) CUSUM control [14], [15];
(ii) α-Winsorization [16]; (iii) the closest theoretically similar
work proposed by us [12] that uses the idea of correlation
clustering and extracts a Pythagorean mean ratio invariant
(from time series) and Cauchy Lorentz loss function for a
robust threshold learning algorithm under noisy training data;
(iv) our invariant AD(tϕ) when combined with simple linear
regression (i.e., square loss) to show the design benefit of the
modified Hampel loss function.

Fig. 8: Comparison with Previous Methods

Fig. 8 demonstrates that our proposed approach (marked
in blue bars) outperforms other methods in terms of anomaly
detection rate, missed detection, and false alarm rates.

Specifically, in terms of detection rate, our proposed method
is two times better than [12] and approximately three times
better than CUSUM and Winsorized Statistics. In terms of
false alarm rate, our method exhibits only 1.4% while the
framework in [12] has 8%. Thus, the proposed method is more
than four times better compared to the next best approach.

To further understand the significant improvement provided
by Algorithm 3, our results are 15 times better in terms of false
alarm rate and 4.5 better in missed detection rate compared to
linear regression used with our proposed invariant.

V. CONCLUSION

We propose a framework for real-time detection of unsafe
events in SWM infrastructure using a time-series approach.
First, a clustering algorithm groups SWMs with similar water
usage and then utilizes the absolute difference between the
negative and positive order of the generalized means to create
an invariant that takes higher values under unsafe events and
lower values under benign conditions. We proposed a modified
application of Hampel three three-part loss function as a noise-
resilient technique to learn the bounds of normal behavior
in the presence of unsafe events in the training set. The
results show that the proposed framework allows decentralized
detection of unsafe events with high accuracy and low false-
positive rates, and outperforms various well-known methods.

Acknowledgements: The work is supported by NSF grants
CNS-2030611, CNS-2030624, and DGE-1433659.

REFERENCES

[1] S. Bhattacharjee and S. K. Das, “Detection and Forensics against Stealthy Data
Falsification in Smart Metering Infrastructure,” IEEE Transactions on Dependable
and Secure Computing, 18(1): 356–371, Jan 2021.

[2] S.Bhattacharjee, P. Madhavarapu, S. Silvestri, S.K. Das, “Attack Context Embed-
ded Data Driven Trust Diagnostics in Smart Metering Infrastructure”, ACM Trans.
on Security and Privacy, 2021.

[3] Helix, “Smart Water Meter Consumption Time Series - Datasets - HELIX,”
Hellenic Data Service, 2020. https://data.hellenicdataservice.gr/dataset/78776f38-
a58b-4a2a-a8f9-85b964fe5c95 (accessed Apr. 03, 2022).

[4] Daiad, “Trials Evaluation and Social Experiment Results,” European
Commission’s 7th Framework Programme, 2017. daiad.eu/wp-contentuploads/
201711D7.3 Trials Evaluation v1.0.pdf. (accessed Apr. 03, 2022).

[5] J. Islam et al., ”Anomaly based Incident Detection in Large Scale Smart Trans-
portation Systems,” ACM/IEEE 13th International Conference on Cyber-Physical
Systems (ICCPS), Milano, Italy, 2022, pp. 215-224.

[6] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating Mutual Information,”
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 69(6), p. 16, 2004.

[7] D. F. Andrews, P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W.
Tukey, Robust Estimates of Location: Survey and Advances, Princeton University
Press, Princeton, NJ, USA, 1972.

[8] N. X. Truong and T. H. Thiep, “Selection of Hydrological and Hydraulic Models
Applied in Urban Drainage,” South Asian Research Journal of Engineering and
Technology, vol. 3, no. 6, 2021.

[9] A. Gutierrez-Escolar, A. Castillo-Martinez, J. M. Gomez-Pulido, J. M. Gutierrez-
Martinez, and E. Garcia-Lopez, “A New System for Households in Spain to
Evaluate and Reduce Their Water Consumption,” Water, 6(1): 181–195, Jan 2014.

[10] B. J. Frey and D. Dueck, “Clustering by Passing Messages between Data Points,”
Science, 315(5814): 972–976, Feb 2007.

[11] R. Mushtaq, “Augmented Dickey Fuller Test,” SSRN Electronic Journal, Aug 2011.
[12] P. Roy, S. Bhattacharjee, S. Abedzadeh, and S. K. Das, “Noise Resilient Learning

for Attack Detection in Smart Grid PMU Infrastructure” IEEE Trans Dependable
and Secure Computing, to appear, 2024.

[13] D. I. Urbina et al., “Limiting the Impact of Stealthy Attacks on Industrial
Control Systems,” Proceedings of ACM SIGSAC Conference on Computer and
Communications Security, 2016, doi: 10.1145/2976749.

[14] “6.3.2.3. Cusum Control Charts.” Accessed: Jan. 31, 2024. [Online]. Available:
https://www.itl.nist.gov/div898/handbook/pmc/section3/pmc323.htm

[15] V. R. Palleti, V. K. Mishra, C. M. Ahmed, and A. Mathur, “Can Replay Attacks
Designed to Steal Water from Water Distribution Systems Remain Undetected?,”
ACM Transactions on Cyber-Physical Systems, 5(1): 1–19, 2020.

[16] R. Wilcox, “Trimming and Winsorization,” Encyclopedia of Biostatistics, Feb.
2005.

[17] P. Schober and L. A. Schwarte, “Correlation coefficients: Appropriate use and
interpretation,” Anesth Analg, vol. 126, no. 5, pp. 1763–1768, May 2018.

VI. APPENDIX

A. Data Cleaning for Clustering

Let us discuss the data cleaning process required for forming
the cluster with the RSR algorithm in section II-B5.

To clean a household’s negative values at a time t, we
analyzed adjacent values, selected the positive value closest
in magnitude to the absolute value of the negative number,
and summed them up. We consider t′ of the selected value as
the correctivet′ . If the sum is negative, we attribute it to the
original hour and set the correctivet′ to zero, else, the original
hour becomes zero and the correctivet′ retains the sum. This
also was able to handle some large positive numbers. The
rationale behind this approach lies in the assumption that the
occurrence of negative values can be addressed by summing
them up with adjacent positive values. This assumption is
also backed up by further study into the data where it was
observed that some instances of large negative readings were
mirrored (or corrected) by approximately equal large instances
of positive values, which we attributed to potential meter
malfunctions. Summing these values refines the dataset to
accurately depict the actual water usage.

If two or more positive values exist within an hour, we
obtained and assigned their sum to that specific hour. This
is because SWM could potentially capture and send readings
more frequently to the data concentrator than what is expected.

For missing data over multiple hours, we identified the
potential cause as network malfunction. We addressed this by
averaging the next available value over the past tm+1 missing
values and recorded this average as the reading for the current
hour and the tm consecutive missing hours. This was able
to handle some large positive numbers. This is because we
assume that each hour preceding the spike contains some data
rather than being entirely missing.

For applications where location or geographical data is
present, the clustering could be made more accurate.

B. Details on Augmented Dickey Fuller (ADF) Test

In this section, we present the step-by-step processes we
followed to test for the goodness of the RSR algorithm in
forming clusters presented in section II that is crucial to
achieving invariance in metrics.

Time-series: [2] proposed an invariant that works well on
cleaned data based on the absolute difference between the
Harmonic Mean (HM) and the Arithmetic mean (AM) at time
tϕ. We use this to obtain the time series for the ADF, which
is denoted by ad(tϕ)

ck such that

ad(tϕ)
ck = |HM(tϕ)

ck −AM(tϕ)
ck | (15)

where Eq. 15 is calculated per cluster ck. Also, the potency
of this combination was confirmed by preliminary results. The
ad(tϕ)

ck is then fed as the time series data into the ADF to
assess the stability.

Augmented Dickey-Fuller Test (ADF): The ADF test is a
statistical method used to determine if the time series is sta-
tionary, indicating that its statistical properties, such as mean

and variance, remain constant over time. A more negative (i.e.,
higher in magnitude) test statistic indicates stronger evidence
for stationarity [11]. This is defined as:

∆yt = a+ βt+ γyt−1 + δ1∆yt−1 + δ2∆yt−2+

δ3∆yt−3 + . . .+ δq−1∆yt−(q−1) + et (16)

Where ∆yt is the differenced time series; a is a constant; β
is the time trend coefficient; γ is the coefficient of the lagged
level of the time series; δ1, . . . , δq−1 are the lagged differences
coefficients of the time series; and et is the error term.

In the framework of the ADF test, the null hypothesis (H0)
and alternative hypothesis (H1) is formulated as follows:

H0 : The time series data possesses a unit root
H1 : The time series data is stationary

The presence of a unit root in a time series data analysis in-
dicates a persistent stochastic trend, making it non-stationary,
its absence however signifies stationarity. We embraced this
concept in our study. To use this test, once a cluster is
formed, we aggregate the water usage of each house based
on equation 15 and then subject ad(tϕ)

ck to the ADF test
(equation 16) to assess the stationarity which would indicate
the efficacy of the RSR algorithm. We provided our hypothesis
based on this and explained it with two clauses.

H0 : The time series data possesses a unit root
H1 : RSR is effective; time series data is stationary

Clause A (H1): The ADF test can determine if a cluster
is stationary given the expected cyclostationary behavior of
ad(tϕ)

ck for corresponding hours of each day, thus, indicating
the RSR’s effectiveness of clustering houses with similar water
usage. The concept is depicted in fig. 9a. The ad(tϕ)

ck for 3
clusters is shown for 6 days. We observe the stationarity of
the ad(tϕ)

ck indicating the efficacy of the RSR in clustering
houses with similar water usage patterns, thus, the visual
similarity for each corresponding hours of each day, i.e., the
ad(tϕ)

ck at t = 00 : 00 on day 1 is similar to the ad(tϕ)
ck at

t = 00 : 00 from day 2 to day 6.
Clause B (H0): Conversely, if the algorithm is ineffective, it

will group houses with dissimilar water usage patterns leading
to a unit root, thus, diverging the ad(tϕ)

ck significantly,
leading to non-stationarity when subjected to the ADF test.

(a) Stationary ad(tϕ)
ck with RSR (b) Test statistics for all clusters

Fig. 9: RSR results for wcut = 0.061 and N = 80

C. Results of Test Statistics for Each Cluster

After obtaining the optimal parameter for wcut and N
in section II-C, we inserted these parameters into the RSR
algorithm to calculate ad(tϕ)

ck . We present a comprehensive
breakdown of the ∆yckk per cluster in Fig. 9b. We observe
that the RSR initially clustered strongly correlated houses;
however, as the iterations progressed, these correlations weak-
ened, resulting in higher test statistics. Despite this, all formed
clusters passed the stationarity test. The stationarity test is
determined by subjecting the test statistics to a critical value,
and if the test statistic is greater than the critical value, the
null hypothesis cannot be rejected, suggesting that the time
series is non-stationary.

D. Comparison of the RSR Algorithm

We compared the RSR algorithm with time series K-means
(TSKM), Agglomerative clustering (Agg), and Density-Based
Spatial Clustering of Applications with Noise (DBSCAN). We
provide the results in Table II where we observe that DBScan
and RSR perform better than TSKM and Agg in terms of the
percentage of clusters passing the stationarity test. We obtained
lower test statistics of −17.48 for the proposed RSR when
compared to DBSCAN which is −11.03, indicating that RSR
gives more stable invariants compared to DBSCAN even with
the same percentage of stationary clusters (those that pass the
stationarity test).

TABLE II: Comparison with Other Clustering Algorithms
Algorithm TSKM Agg DBSCAN RSR

Number of Clusters Formed 8 18 1 11
Percentage of stationary cluster (%) 62.5 77.8 100 100

E. Deviation Reasoning

Here, we give a theoretical explanation of why our proposed
AD(tϕ) in section III deviates under unsafe events.

In mathematics, a Schur − convex function, alternatively
referred to as an S-convex or isotonic, is a type of function
denoted as f : Rd → R. This mathematical concept has a
fundamental property: for any pair of vectors, namely, x and
y belonging to the d-dimensional real space Rd, if it holds
true that x is majorized by y or x is more spread out than y,
then this function satisfies the condition f(x) ≤ f(y). This
property implies that the function assigns smaller values to
vectors that are ”dominated” by other vectors.

In contrast, f is Schur − concave, which means that any
pair of vectors such that x is majorized by y, then this function
satisfies the condition f(x) ≥ f(y). Let’s start interpreting
the behavior of the generalized mean,GMp(x1, x2, . . . , xn) in
Eqn. 4, in terms of Schur concavity and Schur convexity:

If p < 0: the generalized mean GMp ≡ GMp−
is Schur

concave. In terms of the power mean formula, since smaller
values are given more weight, an unsafe event causing a large
decrease (e.g., negative water flow) in one or more numbers in
the series (x1, x2, . . . , xn), causes the resulting GMp−

value
to decrease sharply, and the magnitude of the decrease is
controlled by the value of p−.

If p ≥ 1: the generalized mean GMp ≡ GMp+

is Schur
convex. In terms of the power mean formula, since smaller
values are given more weight, an unsafe event causing a large
increase (e.g., leakage, network malfunction) in one or more
numbers in the series (x1, x2, . . . , xn), causes the resulting
GMp+

value to increase sharply, and the magnitude of the
increase is controlled by the value of p+.

Since our invariant definition contains a combination of both
GMp+

and GMp−
such that

AD(tϕ) = |GMp−
(tϕ)−GMp+

(tϕ)|

regardless of the nature of the unsafe event. Given we are
taking the absolute difference between GMp+

and GMp−
, our

invariant will increase under unsafe events following properties
listed in this work, as long as p ̸= −1

Fig. 10: The Absolute Difference (AD(tϕ))

As illustrated in Fig. 10, there are discernible spikes within
a specific time window. These spikes correspond to exception-
ally high values of AD(tϕ) in Equation 5. This phenomenon
arises when there is a substantial separation between GMp−

and GMp+

. In such cases, either GMp−
or GMp+

assumes
a significantly elevated value.

When GMp−
exhibits a very large value, it implies that

within the given time window, numerous instances of water
usage data fall within the range of very small to moderate
values, while larger values are relatively less prominent. Con-
versely, when GMp+

gets a high value, it signifies that within
the same time window, very large to moderate water usage
values are given priority over smaller values.

Thus, the detection of highly significant small-scale water
usage or water drainage events can be accomplished through
the analysis of GMp, where p < 1. Similarly, the identification
of substantial large-scale water usage events can be achieved
by scrutinizing GMp, where p > 1.

