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Abstract—Smart transportation networks have become instru-
mental in smart city applications with the potential to enhance
road safety, improve the traffic management system and driving
experience. A Traffic Message Channel (TMC) is an IoT device
that records the data collected from the vehicles and forwards it
to the Road Side Units (RSUs). This data is further processed and
shared with the vehicles to inquire the fastest route and incidents
that can cause significant delays. The failure of the TMC sensors
can have adverse effects on the transportation network. In this
paper, we propose a Gaussian distribution based trust scoring
model to identify anomalous TMC devices. Then we propose a
semi-supervised active learning approach that reduces the manual
labeling cost to determine the threshold to classify the honest and
malicious devices. Extensive simulation results using real-world
vehicular data from Nashville are provided to verify the accuracy
of the proposed method.

Index Terms—Smart Transportation, TMC, Active Learning,
Anomaly Detection

I. INTRODUCTION

Smart transportation is an essential clog in the wheel that
runs current and future smart cities, and past two decades have
witnessed an explosive growth in smart transportation network
and Intelligent Transportation Systems (ITS) [1]. These net-
works use two types of communication technologies, Vehicle
to Vehicle (V2V) and Vehicle to Infrastructure (V2I). V2V
communication is the wireless interaction and exchange of
information like speed, location, and other information between
the vehicles. In V2I communication, the road infrastructure
consisting of IoT sensors collects data of vehicle speeds in
various road segments, analyzes them, and shares the traffic in-
formation with the vehicles. The infrastructure and the vehicles
communicate through Dedicated Short Range Communication
(DSRC) protocol [2]. Fig. 1 illustrates the basic architecture of
a smart transportation network [3].

The Traffic Message Channel (TMC) sensors are deployed
on road segments to capture the ambient speeds of passing
vehicles. Multiple such sensors forward information to a Road
Side Unit (RSU). Numerous RSUs are deployed to cover the
smart city area. RSUs sends all the TMC sensor data to
an edge/fog computing module that implements data driven
traffic services (e.g. driving assistance, detection of incidents,
roadside assistance locator, road traffic control, and increasing
efficiency of freeway systems). Naturally, the accuracy of the

data collected from such TMC is of utmost importance for
accurate decisions in a safety critical transportation CPS [4].

Figure 1: Architecture of a Smart Transportation System.

A. Challenges and Motivation

Incorrect or no reporting of vehicle information such as
speed can result in incorrect interpretation of the traffic sit-
uation, which might lead to severe traffic jams. There are
several scenarios that can produce erroneous data from TMCs.
Environmental disasters like hurricanes and lightning strikes
can damage the sensors. Extra moisture can hinder the ability
to supply accurate data from a fraction of sensing devices.
Moreover, the sensors may get stuck at a particular sample
value [5] and keep reporting the same older value. Calibration
errors, low battery in the sensors can also cause the reported
data to be above or below the actual reading. Similarly, some
sensor errors can stop data collection altogether (omission). For
a large community scale IoT infrastructure, we need a scalable
and lightweight device level anomaly detection technique that
can quickly detect these malfunctioning IoT sensors, such that
the maintenance personnel can be dispatched to replace them.

While several theories of anomaly detection [6] and device
trust scoring models [3], [7]–[9] have been proposed to find
the devices whose data is anomalous, there is a challenge
of scalability when it comes to large community scale smart
living IoT applications such as smart connected transportation.
For example, [9] proposed a novel framework for identifying
compromised IoT devices sending falsified data. However, it
uses k-means for classification which is highly data dependent



and requires all devices to participate in the process. Similarly,
the supervised machine learning approaches such as decision
trees and standard Support Vector Machine (SVM) require
labeling of the complete training set. The cost of labelling
is very high and increases with the size of training set. This
puts a tremendous burden on the infrastructure and the large
scale computations also increase the carbon footprint. Ideally,
for community scale IoT, we need a device level anomaly
detection classifier that can reduce the labeling costs and
remain consistent with large test cases.

B. Contributions

To solve the above challenges, the proposed anomaly de-
tection model has 2 main parts. The first part is the trust
scoring model which gives a score based on the recorded
speeds from the TMCs. The consensus aware trust scoring
model is based on Folded Gaussian distribution inspired from
our earlier work [9] which is built for smart meters. The
second part is the classification of anomalous TMCs. For
this, we proposed an active learning based approach which
is a semi-supervised learning algorithm that avoids the need
for large sets of labeled data by employing a technique to
identify and prioritize a limited set of labeled data. This is
immensely beneficial for large community scale smart living
IoT applications such as transportation systems having a large
number of IoT sensing points. The detection model is verified
with different experimental results using a real-world vehicular
dataset from Nashville [10]. We show that the model is able to
detect the traffic incidents and TMCs that are malfunctioning
with an accuracy of more than 85%.

The classification from active learning will be advantageous
compared to classification based on traditional clustering algo-
rithms such as k-means and decision trees. This is because the
outlying samples have lower priority and will not be considered
while learning the threshold for classification. The main idea
is to select specific data samples to label that will give us
optimal classification threshold. Thus active learning reduces
the cost of labeling needed for training the model compared to
supervised learning algorithms.

The rest of the paper is organized as follows. Section II,
discusses the related works. Section III defines the anomalies
and their impacts. Section IV presents the threat model and the
trust scoring mechanism to detect the anomalies. Section V of-
fers the experimental results and finally Section VI concludes
the paper with remarks on future research directions.

II. RELATED WORK

Research on Smart city applications has seen rapid advance-
ments in recent years. A large portion of this research contribu-
tion has focused on the implementation of sensor systems for
transportation, communication, and infrastructure monitoring
[11]–[13]. The two key challenges in large decentralized IoT
networks like the smart transportation network are Quality-
of-Service (QoS) and Security. While QoS focuses on the

ability to provide services within an acceptable time frame,
thus making it a latency critical application, security deals with
resilience and mitigation of unwanted interference, whether it
is environmental or created by an external adversary. Generally,
anomaly detection is focused on finding perturbations that may
cause by either an unexpected event or a False Data Injection
(FDI) attack on the system. Different Intrusion Detection
Systems (IDS) are deployed at key points in the distributed
network to collect and analyze the network traffic to detect
anomalies in the system [14].

Traditional anomaly detection schemes are based on classifi-
cation, statistical inference, state-based analysis, and clustering
[6]. Classification based detection schemes usually rely on
Support Vector Machines (SVM), Bayesian Models, Gaussian
Processes or Neural Networks [15]. However, these methods
require large-scale accurate models of system behavior which
might contain sensitive information (e.g., exact locations and
movements of the users over time). State based methods based
on Kalman Filtering [16] require realistic assumptions on
the data distribution to estimate normal behavior which is a
challenging task. In [3], the authors have presented a decen-
tralized and light-weight anomaly detection approach on RSU
level based on the ratio of Harmonic and Arithmetic mean to
detect different types of data falsification. However, the method
results in a false positive rate of 20% which is relatively high
considering the fact that attacks on the system are generally
rare, and a high false positive rate would disrupt the system
frequently which would cost in infrastructure management.

III. SYSTEM MODEL

We consider a set of N TMCs that collects the speeds
information from the vehicles. The speed reported by i-th
TMC at time slot t is represented by Sit . We model Sit as
the realizations of a random variable (r.v.) Si denoting the
speed distribution of the vehicles of i-th TMC. We develop a
detection model that is deployed at the cloud server to analyze
the measurements of each TMC. The model will be able to
detect congestion, accident, or sensor failures in real-time.

A. Anomaly or Failure Model

In this paper, we specifically investigate TMC sensor faults
and failures as the causal reason for anomalies. In this work, we
propose a model to detect such anomalies at the TMC level
to isolate the TMCs that need inspection. Let’s consider M
TMCs record are anomalous of the total N TMCs. We define
M
N = ρan ∈ [0, 1). For example, ρan = 0.05, means 5% of the
total number of TMCs have readings that anomalously deviate
from the free-flow either due to sensor failure or congestion.
A sensor failure can result in following situations:

Stuck Value Anomaly: In this type of sensor failures, the
reporting value gets stuck at a value in which the sensor was
last correctly working. This results in reporting of the same
value which is not the actual true value.



Calibration Anomaly: If condensation builds up on the sen-
sor equipment, it can impact the sensor calibration accuracy
and result in reporting of false data. The calibration anomaly
can result in increased or decreased speeds compared to the
true value.

Omission Failures: In this case of sensor failure, the TMC
will stop reporting. This can be easily detected as the records
will be empty for that particular TMC.

Free-flow is the average speed recorded under no conges-
tion and sensor failure. Depending on the average speed, the
anomalies could be classified as deductive or additive based on
its nature of deviation from the free-flow speeds. For example,
for omission failure of TMC, the actual speed of information
Sit from the i-th TMC at time t will be much lower or zero
compared to normal free-flow situation. The additive anomaly
is possible under the calibration error as this type of sensor
failure can report any false value.

We denote δavg as the average margin of deviation from the
free-flow for each TMC. It is the average of all δt values for a
TMC in a given time frame. Note that our model does not use
specific vehicle information rather uses the collection of speed
information of multiple vehicles captured at the TMC level.

IV. PROPOSED APPROACH

The detection model consists of two main steps. The first
step is the scoring model, and the second step is classification.
In the scoring model, a trust score will be calculated depending
on the vehicular readings of each TMC. The second step uses
an active learning model to classify benign or non-anomalous
TMCs from anomalous ones. Our method is divided into four
sub-modules: (1) Trust Scoring model; (2) Selection of Sparse
Manual Labels and Initial Threshold; (3) Priority Scoring of
TMCs; (4) Priority Score enabled Final Threshold Selection.

A. Trust Scoring Model

The trust scoring model will be used to identify TMCs
reporting the anomalous data by assigning a score depending
on the speeds recorded. The trust score is calculated for each
TMC over a time frame of T (< 2 hours). The trust scoring
model starts with discrete rating criterion that assigns a rating
level to each TMC reading, by comparing proximity of its
reported data Sit at time slot t with the historical (previous
time frame) free-flow mean consensus µH over the time frame.
The absolute difference between the Sit for any TMC i and the
µH , |Sit − µH | will be used along with the historical standard
deviation (σH ). The discretized rating level for each TMC
reading denoted by rit is given by Table I, using the empirical
rule for Gaussian distributions to assign Sit as belonging to one
of the 4 possible rating levels. The highest rating 4 is closest
in terms of proximity to µH , and similarly lower ratings are
obtained if the TMC’s data is further from the µH . Over the
time frame T , all the discrete ratings over time frame T for
each TMC i is collected to form a rating vector sequence ~risort
sorted in ascending order of discrete ratings.

Table I: Discrete Rating Levels

Scenario of Si
t Rating (rit)

|Si
t − µH | ≤ σH 4

σH < |Si
t − µH | ≤ 2σH 3

2σH < |Si
t − µH | ≤ 3σH 2

otherwise 1

Most of the vehicles will be going closer to the mean free-
flow speed. So, under no anomalies, the most common and
highest rating level is 4 followed by all others. The sign of the
discrete rating is always positive as in the folded Gaussian,
the magnitude of difference |Sit −µH | is the only thing that is
considered. Higher percentage of lower ratings in a time frame
will give lesser weights to the lower ratings than a scenario with
lower percentage of low level ratings and vice versa. First, a
weight parameter xt distributed between 1 to 4 is calculated as
shown in Eqn. 1 where K = 4 is the total number of discrete
rating levels in the system, CT is the count of readings in a
selected time frame. The final weights are achieved through
Eqn. 2 where µBR = 4 is the best or highest possible rating
level and σidr denotes the standard deviation of discrete ratings
of each TMC in the time frame T . σidr for each TMC will be
different based on different observations compared to common
mixture data, which captures individual differences in behavior.
Therefore, the corresponding raw weight cwt of the rating at
time index t yielded from Eqn. 2, are normalized as shown in
Eqn. 3.

xt = 1 +
(K − 1)t

(CT − 1)
∀ t ∈ T (1)

cwit =
1

σidr
√
2π
e
− (xt−µBR)2

2(σi
dr

)2 (2)

wit =
cwit∑T−1
t=0 cwit

(3)

All the density values are combined to form a weight vector
~W i for each TMC i as in Eqn. 4. The aggregate weight rating
Ri of the i-th TMC will be a scalar value between 1 and 4
resulting from the dot product of weight vector ~W i and sorted
discrete rating vector ~risort as shown in Eqn. 5.

~W i = [wi1, w
i
2, ..., w

i
t, ...] ∀ t ∈ T (4)

Ri = ~risort · ~W i (5)

As the ratings will be positive irrespective of whether the
reading is greater or lesser than the rating level 4 are treated
as the same random variable. Hence, the aggregate weighted
(Ri), when interpreted as a trust score will also follow a folded
Gaussian shape. This meaning Ri = 4 represents the highest
trust score followed by an exponential reduction of trust, as
Ri decreases. We used the inverse power law inspired kernel
trick to transform the Ri that ranges from 1 to 4 into a final
trust value, TRi, for each TMC i between 0 and 1, as shown



in Eqn. 6. The value of K depends on the number of rating
levels (4, in our case).

TRi =
1

(K)η
(Ri)η (6)

B. Selection of Sparse Manual Labels and Initial Threshold

The folded Gaussian model gives a trust score (TRi) for
each TMC i ∈ N . The TMCs with lower trust scores imply
anomalous behavior because they result in lower rating labels.
The classification is done by determining a linear threshold
that separates the anomalous TMCs from the benign ones.
The TMCs with trust scores higher than the threshold will be
considered as benign whereas the ones less than the threshold
will be marked as anomalous. In this section, we will discuss
the selection of the manual label set and initial threshold that
initiates the active learning process.

Consider the trust scores of all the N TMCs. First, using
winsorization we trim out α% of the lowest and highest trust
scores to reduce the influence of extreme points on the learning
process. From the set of remaining TMCs, we pick a subset
Qb verified with no anomalies which forms the first class
(denoted by blue dots of size |Qb| = 10 in Fig. 2). Then, we
pick a subset of TMCs of size Qa with verified presence of
congestion, stuck value anomaly, and traffic incidents (denoted
by red stars of size |Qa| = 10 in Fig. 2). The verification is
allowed by a ground truth data set available from Nashville
Police and Emergency Response Units [10].

The combination of Qa and Qb (Qa∪Qb) from the training
set forms the initial sparse set of TMCs of size Q that requires
manual labeling. For illustration, 10 anomalous labels and 10
benign labels are shown in Fig. 2 making |Q| = 20 labels. For
the rest of the TMCs (denoted by green marker in Fig. 2), we
have scores from the training, but no information on whether
they are benign or anomalous. The challenge is to learn the
accurate threshold without knowing the label status of most of
the TMCs in the network. This exemplifies the power of our
approach for community scale smart living IoT applications.
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Figure 2: Initial Manual Labeling of few TMCs.

Now, we use the set Q, to calculate an initial threshold
(denoted as THinl) using Support Vector Machine (SVM) with
a linear kernel. The rationale for using a linear kernel is due

to the fact that the scores are distributed which indicate that
they are linearly separable.

C. Priority Scoring of TMCs

Given the initial threshold THinl and the sparse labeled set
Q, we need to iteratively find the most appropriate training data
points of N TMCs that will enable the learning of the final
threshold (THfnl) which in turn will be used for classification
in the test set. The selection of important data points for each
iteration of active learning is achieved via priority scoring
which uses least confidence to calculate the scores. These
newly selected data points will be used to keep updating
the threshold in each iteration. This process ends when the
threshold remains unchanged in two consecutive iterations.

In least confidence, the data points whose scores are neither
too high nor low end up with higher priority scores compared to
extreme scores. For example, the data points among the highest
trust scores and least trust scores have higher probability to be-
long to the true benign class and anomalous class respectively.
However, the data points closer to the current threshold (at any
iteration) cannot be certainly determined whether they belong
to one class or the other. Thus, they have the least confidence
or paradoxically, the highest priority score (denoted by LC).
These higher priority data points play a proportionally more
crucial role in the determination of the final threshold.

To calculate the priority scores, we need the probability of
each TMC i belonging to the anomalous class (P ia) and the
benign class (P ib ). These probabilities should depend on the
trust score (TRi) of the TMC i and the threshold calculated
at the j-th iteration TH(j). When the trust score of the i-th
TMC is equal to the threshold, there is no preference on the
class membership and we can say that the P ia = P ib = 0.5. As
the TRi scores far away from the threshold, the probability of
the i-th TMC belonging to certain class increases. The least
confidence priority score (LCi(j)) of TMC i and iteration j
is calculated from P ia(j) and P ib (j) as shown in Eqn. 9. The
priority score will be higher for TMCs with trust score closer
to the threshold. For example, consider TH(j) = 0.55 and
two TMCs with trust scores TR1 = 0.5 and TR2 = 0.9,
the priority scores will be LC1 = 0.45 and LC2 = 0.11
respectively. So, the first TMC will be picked over the second
for the set Z because of higher priority score.

P ia(j) =

{
1
2 −

TRi−TH(j)
2×(1−TH(j)) , If TRi > TH(j)

1
2 + TH(j)−TRi

2×TH(j) , Otherwise
(7)

P ib (j) = 1− P ia(j) (8)

LCi(j) = 1−max(P ia(j), P
i
b (j)) (9)



D. Priority Score based Final Threshold Selection

The manual labeled set Q and initial threshold (THinl),
are input to the calculation of final threshold THfnl. Active
learning is an iterative approach and slowly corrects the thresh-
old. The change in threshold leads to change in the set of
appropriate data points. We represent the changing set with
Z(j) for iteration j.The active learning starts with THinl. It
continues using the following 6 steps until we get the final
threshold. The iteration for active learning in Algorithm 1 (line
4-9) is explained below:

1) The current threshold (TH(j)) will be used to calculate
the priority score (LCi) of each TMC i using Eqn. 9.

2) Find the set Z(j) with TMCs having highest |Q| priority
scores calculated from step 1.

3) Manually label the unknown data points from the set Z(j)
using ground truth information.

4) Increment j by 1.
5) Using the trust scores of TMCs from set Z(j − 1), the

threshold (TH(j)) will be calculated using SVM.
6) If TH(j) is different from TH(j − 1), go to step

1. Otherwise the current threshold TH(j) will be the final
threshold THfnl.

Algorithm 1 Finding threshold using Active learning

1: Input: Q, j = 1, TH(j) = THinl, TH(0) = 0
2: Output: THfnl

3: while TH(j) 6= TH(j − 1) do
4: Calculate LC for all TMCs using TH(j)
5: Z(j) = Top |Q| TMCs with highest LC values
6: Query the unknown labels of Z(j)
7: j = j + 1
8: TH(j) = SVM(Z(j − 1))
9: end while

10: THfnl = TH(j)

1) Optimal size of Q: Q is the set of TMCs considered for
manual labeling and finding new threshold in each iteration of
the active learning model. The classification performance of the
model is dependent on the size of Q which is a hyperparameter
that can impact the final threshold THfnl. If the size of the
set Q is too small, it can result in under-fitting, whereas a
larger size of Q can result in over-fitting. Hence, we need to
determine the optimal value of Q.

The measure of optimal size of Q can be done using an
error function E that will be minimum under best classification.
The summation of the priority scores LCi(Q) of set of mis-
classified TMCs Y will be lower under best size of Q as the
number of mis-classifications will also be lower. The error
function for each value of Q will be summation of priority
scores calculated using THfnl for the set of mis-classified
TMCs as shown in the Eqn. 10. The error function for different
values of Q can be seen in Figure 3. From the result, we can
say that the optimal size of Q is in range of 10-20.

E = argmin
|Q|

(∑
LCi(Q) ∀i ∈ Y

)
(10)
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Figure 3: Error rate under different values of Q.

V. EXPERIMENTAL RESULTS

Description of Datasets: We have used a real-world vehicular
dataset from Nashville, Tennessee to validate the proposed
solution. The dataset has vehicular data recorded in real-time
over a period of 4 months (January to April) with 1271 Traffic
Message Channels (TMC) [10]. We used the first two months
(January and February) for training the model. March data is
used for cross-validation and April data is used as the test
set. The dataset contains the ground truth for accidents and
congestion. The results from this section are considered from
60 TMCs belonging to a 10 different RSU clusters.

A. Trust Score Classification of TMCs

The trust scoring model is applied to the test set of the
Nashville dataset. The active learning parameters we derived
from the training and cross-validation will be used for classi-
fication. The test data contains TMCs reporting wrong infor-
mation under both additive and deductive anomalies.

A higher trust score implies the TMC is under a normal
behaviour (free flow) while the lower trust score is the result
of either congestion or sensor failures. Intuitively, a congestion
will always be a deductive anomaly but the sensor failure
can result in either additive or deductive anomaly. The trust
model generates a score for all the TMCs in the current time
frame, we then used the THfnl value from active learning for
the classification. The test data includes TMCs with simulated
sensor failures including stuck value, calibration and omission
anomalies. Stuck value is simulated using true value right
before the start of anomaly. For calibration anomaly, a constant
random number is added or subtracted for each TMC reading.
Figure. 4(a) shows the performance of trust scoring model in
detecting the additive anomalies caused by the sensor malfunc-
tion. Figure 4(b) depicts the performance of the model under
different deductive anomalies including congestion and sensor
failures. The sensor failures can be filtered using existing non-
recurrent congestion detection mechanisms [17].
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Figure 4: Classification of Anomaly: (a) Additive (b) Deductive

B. Performance Analysis

The time to detection of anomalies is a critical factor in
vehicular networks given the real-time nature of the applica-
tions. The accidents and congestion need be detected quickly
to warn the other vehicles to avoid the congested routes. The
performance must be good at lower detection time for detecting
the anomalies. Fig. 5(a) shows the performance of the model
with the detection time ranging from 30 minutes upto 3 hours.
The result shows the proposed model is able to detect the
congestion and accidents with an accuracy of over 85% (the
error rate is < 15%) in only 30 minutes.
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Figure 5: (a) Time to detection (b) Margin of failure.

The model works well under different levels of conges-
tion/failure. This can be seen in Figure. 5(b) where the per-
formance is good even when deviation in speed is less than
10 mph. We have simulated the anomalies for different ρan to
see the impact on error rate and Figure 6(a) indicates that the
performance is not affected by the number of TMCs with the
anomalies (ρan). The labeling cost of active learning will only
be a small fraction compared to supervised classification mod-
els where all N TMCs required to be labeled. In comparison
with unsupervised classification models, the Figure. 6(b) shows
the active learning achieves lower mis-detection rate than using
k-means at different δavg .
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Figure 6: Performance (a) ρan (b) Active Learning vs K-means.

VI. CONCLUSION

In this work, we have presented an anomaly detection model
for the IoT sensors in smart transportation. The anomaly could
be any abnormal traffic incident or due to sensor malfunction.
We used the folded Gaussian trust scoring model to generate
the trust score for each TMC depending on its measurements.
Then, we applied an active learning approach to classify the
TMCs with anomalous behavior. This also helps to detect any
traffic incidents in near real-time as the proposed model is able
to detect the anomalies within 30 minutes with good accuracy.
In future we will extend the model to distinguish between
different types of anomaly. This would help the network to
take the required safety measures immediately.
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