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Abstract—Reliable automation of smart grids depends on
decisions based on situational awareness extracted via real time
system monitoring and accurate state estimation. The Phasor
Measurement Units (PMU) at distribution and transmission lay-
ers of the smart grid provide high velocity real time information
on voltage and current magnitudes and angles in a three phase
electrical grid. Naturally, the authenticity of the PMU data is
of utmost operational importance. Data falsification attacks on
PMU data can cause the Energy Management Systems (EMS)
to take wrong decisions, potentially having drastic consequences
on the power grid’s operation. The need for an automated
data falsification attack detection and isolation is key for EMS
protection from PMU data falsification. In this paper, we propose
an automated distributed stream mining approach to time series
anomaly based attack detection that identifies attacks while
distinguishing from legitimate changes in PMU data trends.
Specifically, we provide a real time learning invariant that reduces
the multi-dimensional nature of the PMU data streams for
quick big data summarization using a Pythagorean means of the
active power from a cluster of PMUs. Thereafter, we propose a
methodology that learns thresholds of the invariant automatically,
to prove the predictive power of distinguishing between small
attacks versus legitimate changes. Extensive simulation results
using real PMU data are provided to verify the accuracy of the
proposed method.

Index Terms—Smart Grid Security, Phasor Measurement Units
Security, Big Data Management, Anomaly Detection.

I. INTRODUCTION

Traditionally, power grid operators had limited information

about dynamically varying system states in the grid. Many

major faults in the grid are usually preceded by ephemeral

warning signs (e.g., voltage sags) that Supervisory Control

And Data Acquisition (SCADA) measurements (with data

resolution of several seconds) could not capture as shown

in [11]. To alleviate this problem, PMUs are deployed to

capture fine grained high resolution time series data. These

PMUs form the crucial endpoint device for the PMU Infras-

tructure, one of the key cornerstones of the modern smart grid

design. Furthermore, with the increasing market penetration

of Distributed Energy Resources (DERs) (e.g. solar panels),

two-way electricity flows, and novel loads (such as electric

vehicles), the grid requires real time grid monitoring, making

the integrity of PMU data streams of strategic importance.

The PMUs record time-synchronized measurements of volt-

age, current, phase angle and frequency (collectively known

as synchrophasor data) and sends it to an aggregator called

Phasor Data Concentrator (PDC). The PDC, in turn, relays

such data to a control center, allowing grid operators to localize

and infer the type, time and location of a fault or disturbance

as well as support critical control-actuation operations such

as state estimation, maintain optimal power flow, based on

the measured PMU data streams. The architecture of a typical

PMU-PDC infrastructure is shown in Fig. 1.

Figure 1: Architecture of a PMU Infrastructure.

However, in recent years, power distribution systems have

faced cyber-attacks, threatening their security, reliability of

operations. The report of US National Research Council high-

lights potential multi-state blackouts as a result of coordinated

False Data Injection (FDI) attacks on power systems [2]. Such

an attack on the Ukrainian power grid resulted in the loss of

service for approximately 225,000 customers in three different

territories which lasted for several hours [3]. Stuxnet worm has

directly affected more than 100,000 industrial components [4].

However, the widely accepted IEEE C37.118-2 protocol for

synchrophasor communication is highly vulnerable to cyber-

attacks [6], [8]. In fact, most synchrophasor data transmission

happen on non-reliable and insecure IP networks. Heavy

encryption is not possible due to the latency critical nature

of PMU data applications, thus increasing the chances of FDI

attacks. This motivates the need for anomaly based intrusion

detection in PMUs. While some existing research [7], [14]

offer solutions, they have the following limitations: [7] focus

on transmission layer PMUs, where data is very stable, thus

making anomaly detection easy. The [5] considers the problem

of only voltage data falsification, which is stable and hence

easy to detect, ignoring current data falsification.

In this paper, we first discuss multiple attack strategies

for data falsification attacks in PMUs. Then, we propose

a process variable selection that reduces the dimensionality



of the anomaly detection problem. Then, we use a ratio of

harmonic means to arithmetic means of the active power

derived from the synchrophasor data sent from PMUs as a

data-driven ‘invariant’ for anomaly detection. Specifically, we

find the appropriate spatial and temporal considerations of

the PMU network, such that an ‘invariant’ is highly stable

under no attacks but shows unique changes under various

kinds of data falsification attacks. Then, we propose a two-

tier threshold based detection criterion involving stateless and

stateful residuals of the anomaly detection metric, that better

improve the false alarm versus detection sensitivity trade-off.

The two-tier detector uses the sum of long term residuals

from the median absolute deviation of the ratio based metric

observed over the training phase. Finally, we validate our work

by using real PMU datasets collected from Lawrence Berkley

National Lab across 12 days.

The main benefits of our approach are to provide a practical

framework for compromised PMU identification that (i) real

time, light weight, semi- supervised, (ii) enables quick iden-

tification, and (iii) simultaneously works for a variety of data

falsification attack types.

The rest of this paper is organized as follow. Section II,

discusses related work. Section III discusses PMU dataset

description, system and threat models, Section IV presents

the proposed detection framework, Section V and VI offers

experimental results and conclusions, respectively.

II. RELATED WORK

In [7], a mechanism based on continuous monitoring of

phase-wise equivalent transmission line impedance was pro-

posed, for detecting data falsification on the voltage data from

transmission system PMUs. However, they require two PMUs

deployed at both ends of the transmission line and one of

them needs to be honest. More importantly, we found that the

PMU data streams at transmission level were inherently stable

making anomaly detection a less challenging problem.

In [5] a Support Vector Machine (SVM) was used for detec-

tion, against a mirroring spoof attack strategy on the voltage

data at distribution level PMUs. However, only falsification of

voltage stream was considered which is relatively stable and

makes anomaly detection less challenging.

The [9] proposed a decision tree based anomaly detection

scheme to differentiate between normal tripping and malicious

tripping by training on specific attack samples. However, it is

not feasible to generate 100% of all the possible legitimate

line tripping cases for training in [9].

In [14] a smart Time Synchronization Attack (TSA) based

on GPS spoofing was shown to be equivalent to modifying the

phase angle measurement from PMUs. However, they have not

discussed any defense mechanism.

In [13] a density-based local outlier factor (LOF) analysis

was used to detect the anomalies among the data, to describe

spatio-temporal outliers among all the synchrophasor measure-

ments from the grid. However, this method might not be able

to detect attacks in real time and in their proposed method the

authors have only considered an attack on voltage magnitude.

A critical analysis of all previous works on the detection

of PMU data falsification revealed that current data falsifica-

tion for PMU streams was not investigated. Furthermore, we

found that unlike transmission level PMUs, the distribution

level PMU’s current synchrophasor data shows high dynamic

variations in benign conditions, making anomaly detection

challenging. Finally, all previous defenses are stream specific

in the sense that they only work for either voltage or phase

falsification. Since each PMU contains 4 streams and has 3

phases, a stream specific defense will require 12 different

defense models that need complex cross-coordination.

III. SYSTEM AND THREAT MODELS

A. PMU System Architecture

Here we first describe the PMU infrastructure network

architecture. Most PMUs measure time-stamped voltages and

current magnitudes and their phase angles denoted by Vt(j),
It(j), θVt (j), θIt (j) respectively, where t is the time stamp

and j is the j-th phase. These PMUs are deployed at strategic

points of the transmission and distribution layers of the smart

grid. Each PMU sends its data to a regional decentralized

data aggregator known as PDC. The corresponding PDC in

turn relays the aggregated data from multiple PMUs to a

Local Controller Center (LCC). Various local controller centers

communicate with each other forming a wide network for

synchronizing local and global PMU data. In this paper, we

are specifically interested in a decentralized anomaly detection

that runs on a PDC or a LCC and facilitates early attack

detection from a bunch of PMUs that are geographically

proximate in terms of the PMU network.

Dataset Description: We use a dataset collected from the

Power Standards Lab (PSL) at LBNL in Berkeley, CA, which

developed high-precision µ-PMUs for showing how steps in

our framework related to a real PMU system. The LBNL

dataset contains three µ-PMUs that are deployed at multiple

utility and LBNL campus locations on 12 kV distribution grid.

The µ-PMU devices are named as: Grizzly, A6, and Bank514

in the dataset. Each µ-PMU device produces 12 streams of

120 Hz high-precision values with timestamps accurate to 100

ns (the limit of GPS). The 12 streams of data include both

magnitude and phase angle for both voltage and current for

all three phases on a true distribution network [10].

B. Threat Model

This section describes three features characterizing the threat

model (e.g.,attack types, falsification margins, and falsification

distributions) that can be employed by organized adversaries.

Threat Model Scope: PMU being a comparatively new re-

search area, real malicious data samples from PMUs are hard

to find. Therefore we generated the malicious samples by

applying the three aspects of adversarial strategy over the real

data. We have ensured that the falsification strategies used, do

not favor or suit our proposed defense mechanism.

In simple electrical terms, the term load is equivalent to

the current magnitude in each phase. Typically, in any phase,



there could be two possibilities of load change. Either there

could be an increase or decrease in current, both creating an

imbalance in the power grid. An increase in the phase current

will cause the phase voltage to drop. If the current increases

too much, then the phase is shed or the load is switched to

other phases. Imbalance can also occur if the current drops in

any phase, making the system inefficient in terms of utilization.

This creates a motivation to falsify current measurements.

Attack Types: Attacks can be categorized in different types

based on how data is changed across multiple PMUs. Or-

ganized adversaries can falsify data from single or multiple

compromised PMU(s) simultaneously. Based on the objective

and intent of the adversary, any of the four streams (Voltage

Magnitude, Voltage Angle, Current Magnitude, Current Angle)

of each phase can be falsified.

We assume the adversary falsify the ‘current magnitude’.

Let Iit(act) be the actual current magnitude of i-th PMU at

time t, while Iit be it’s reported value. Under no attacks, the

actual and reported value Iit = Iit(act), while under attacks

the reported value Iit can be biased by the following ways:

Deductive: In this case Iit from the i-th compromised PMU

at time t is changed to Iit(act) − Iδt , where Iδmin
≤ Iδt ≤

Iδmax
, for Iδmin

> 0 is the false bias. Deductive attacks disrupt

the efficiency of the grid by reducing the power utilization.

Additive: An additive attack can be launched by a rival

utility to make the control center believe in a sudden increase

in load which might lead to load shedding in that particular

phase. Therefore, for additive falsification, the modified attack

sample is Iit = Iit(act) + Iδt from a compromised PMU.

Alternating Attack: The adversary alternates between addi-

tive and deductive falsification for equal time duration over the

time domain with the same average bias value of Iδt . In such

a case, the effect of additive and deductive falsification will

cancel each other’s effect over a particular time period making

it hard over most device specific statistical anomaly detectors

to detect such attacks.

FDI Margin: We consider Iδavg
as the average margin of

false data for each compromised PMU. The strategic value of

Iδavg
is selected by an adversary as some value that ensures

some minimum damage to the system. We keep this as an

uncontrolled variable to test detection sensitivity since there

could be various applications of PMU data. We consider that

the attack is uniformly distributed Iδt ∈ [Iδmin
, Iδmax

] that

does not change the resultant shape of the load distribution

drastically, making it a smarter and less obvious attack.

Attack Strategies: We consider three types of attack strate-

gies: (a) Step attack: In this case the adversary modifies

all samples by Iδavg
in the attack period. (b) Ramp attack:

Here adversary gradually increases the Iδt in each time slots

to reach Iδmax
and then again gradually decreases Iδt [7].

(d) Mirroring: Here attacker captures Iit for some period and

then replaces the actual current measurements with the mirror

image of captured Iit .

IV. PROPOSED FRAMEWORK

The proposed framework is divided into four steps: (1)

Propose a derived process variable (active power from syn-

chrophasor measurements) that will form the basis for the

anomaly detection process; (2) Design the invariant metric by

optimizing spatial and temporal granularities of the process

variable; (3) Design of a stateless and a stateful detection

thresholds that identify the normal region of invariants under

no attacks from the training set, such that false alarms are

not drastically sacrificed for detection sensitivity improvement;

(4) Determine the detection criteria parameters, based on

learning from the training and cross validation steps, and

apply it on the testing set, such that the predictive accuracy

of distinguishing between legitimate changes versus malicious

attacks is improved.

A. Choosing Process Variable for Anomaly Detection

Given the high velocity of the data, quick lightweight ana-

lytical tools are required for big data summarization to ensure

the security and integrity of the dataset. However, due to 12

streams of data per PMU, the variety of data is extremely large.

With multiple data streams per PMU, the anomaly monitoring

of all these streams separately increases the computational cost

and latency in anomaly detection analytics.

Hence, we propose the active power calculated from syn-

chrophasor data streams per PMU, as the process variable over

which the data driven invariant is designed. The active power

(P (j)) per phase from PMU measurements are calculated

using the following standard power equations:

P (j) = V (j)I(j) cos θ(j) (1)

where j ∈ {1, 2, 3} denote the phases and V (j), I(j), θ(j) are

voltage magnitude, current magnitude, and angle difference

between voltage and current phases respectively, for the j-th

phase. This reduces the complexity of the monitoring each

stream separately unlike existing works.

Another advantage is that any deliberate falsification of the

voltage or current (both in terms of magnitude and phase)

will impact the active power, and hence we can potentially

detect an attack on any of the data streams from PMUs.

Therefore, for our anomaly detection, we propose to use the

phase wise monitoring of the active power P (j) as a starting

point. To clean the raw dataset [10] we have also applied 95%

Winsorization before proceeding with our model.

B. Achieving an Invariant for Anomaly Detection Metric

For real time anomaly detection in CPS, it has been estab-

lished that a metric which is invariant under normal operating

conditions (without any attack) is ideal for attack detection.

However, unlike tightly controlled industrial CPS applica-

tions, the distribution level synchrophasor data is affected by

randomness and renewable power outputs and consumption

patterns, causing traditional statistical invariants to have high

randomness. As shown in Fig. 2a the arithmetic mean of the

time series is not stationary. Prior works such as [12] propose

the use of derived smoothing statistics of the arithmetic mean
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Figure 2: Illustrations of AM and HM/AM: Weekdays: Day

1,2,3,6; weekends: 4,5.

(such as ARMA, EWMA, CUSUM control charts) for time

series anomaly detection. However, Fig. 2a shows that time

series of PMUs active power fluctuates greatly over time

windows, making it difficult to distinguish legitimate changes

from a malicious one. Any moving average or smoothing

technique either loses sensitivity for a small margin of attacks

(since the moving average does not reflect the changes beyond

already existing deviations or has large false alarms.

Let Pt = [P 1
t , ..., P

N
t ] denote the active power from N

PMUs at time slot t. We have taken second wise average

of active power for our analysis, thus t = 1 second. Re-

cently, in [1], we have shown that the ratio of harmonic

mean and arithmetic mean of positively correlated variables

exhibit invariance in their time series even when the individual

means show non-stationarity. Additionally, [1] showed that

the data perturbations in any variable cause the ratio to

lose its invariance. However, this stability is guaranteed for

appropriately correlated variables only. Hence, our primary

goal is to investigate how to apply this on active power from

PMUs. To this aim, we need to find the appropriate spatial and

temporal granularity that maximizes the correlation between

active powers on a given phase across different PMUs, which

ensures invariance in the following metric:

Harmonic to Arithmetic Mean Ratio: Let the harmonic

mean (HMt) and arithmetic mean (AMt) of Pt at time slot t
be defined as:

HMt = N(

N
∑

i=1

P i
t )

−1 and AMt =
1

N

N
∑

i=1

P i
t . (2)

We calculate HMt and AMt for slot t over a time window

T of length n slots. Then we calculate the average HMt to

AMt ratio, Qr(T ), at the end of each window as follows:

Qr(T ) =

∑n
t=1 HMt

∑n
t=1 AMt

(3)

where 0 ≤ Qr(T ) ≤ 1, as HMt ≤ AMt.

1) Optimizing the Spatial Granularity: Intuitively,

a group of PMUs connected to the same feeder or

serving proximate geographical areas should exhibit some

interdependence in the synchrophasor data streams. We use

the pairwise Pearson correlation coefficient to identify clusters

that show some level of positive correlation. The higher the

desired level of invariance, the higher is the required level of

positive correlation. We calculate hourly Pearson’s correlation

among all pairs of PMUs in the training set to find groups
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Figure 3: PMU clustering and MAD over time window.
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Figure 4: Stateless and Stateful Residuals for ǫ = 0.85.

having a maximum correlation. In the LBNL dataset, the

mean of hourly correlations between Grizzly, A6 is 0.98;

between Grizzly and Bank514 is 0.54; between A6 and

Bank514 is 0.55 as shown in Fig. 3a. It is evident from the

mean correlations that Grizzly and A6 are connected to the

same feeder and thus can be considered in a single cluster.

The average correlation identifies PMUs to be clustered under

one instance of the anomaly detection technique.

2) Optimizing Temporal Granularity: Now we focus on

choosing the appropriate time granularity over which the ratio

metric is calculated. The time granularity should be such that

the invariance in the ratio metric is maximized (i.e., minimize

the measure of dispersion in the ratio statistic). Therefore, we

solve the following search problem:

T = argmin
T∗

MAD(Qr(T ∗)) (4)

where MAD(Qr(T ∗)) is the median absolute deviation

(MAD) of the resulting ratio time series with candidate time

granularity T ∗ ≤ 360 seconds. We choose T ∗ that minimizes

the MAD of the ratio time series (shown in Fig. 3b).

C. Stateless and Stateful Residual based Threshold Design

Intuitively, The anomaly detection needs to identify a prox-

imate spatial region around the ratio time series that specifies

the behavior of the invariant under no attacks. Usually, a

threshold is calculated by tracking the difference between the

actual time series value and its smoothed value over time.

However, a simple threshold based approach, cannot decrease

both false alarms and missed detections simultaneously [12].

Hence, we put forward a two-tier approach with stateless and

stateful residuals.

1) Stateless Residuals: The stateless residual is an instan-

taneous residual per time window T . Our method computes

the mean µr and median absolute deviation, mQ, from the

probability distribution of ratio values Qr(T ) for each PMU

cluster (shown in Fig. 4a).



Unlike our previous work [1], we propose the use of Median

Absolute Deviation (MAD) as a scale parameter for designing

the stateless residual rather than the standard deviation (SD),

because MAD is more robust to outliers. Thus, MAD can

automatically adjust the resultant safe margin under errors and

outliers in the training. The MAD is robust than SD since it

is based on a squared error from the mean, so a finite number

of outliers can influence SD easily compared to MAD, thus

reducing sensitivity to small attack strengths.

Stateless residual is parameterized as κ = ǫmQ where

ǫ ∈ (0, 4], such that κ ∈ (0, 4mQ] and mQ is the MAD.

Intuitively, larger κ values produce wider safe margins, thus

reducing false alarms but increasing misdetection and vice-

versa. Hence, a trade-off is necessary for selecting a threshold

that will automatically generalize into lowering false alarms

while not sacrificing the detection sensitivity, which is taken

care of by the stateful residual as shown in Fig. 4b.

Our framework calculates a parameterized ’stateless resid-

ual’ with two values; Γl(T ), and Γh(T ) around the observed

instantaneous ratio values Qr(T ), on every time window on

the training dataset, such that:

Γh(T ) = Qr(T ) + ǫmQ. (5)

Γl(T ) = Qr(T )− ǫmQ. (6)

To first derive, an instantaneous stateless residual ∇(T )
which is the ’signed residual distance’ between the observed

ratio and the stateless residuals as:

∇(T ) =







Qr(T )− Γh(T ), if Qr(T ) > Γh(T );
Qr(T )− Γl(T ), if Qr(T ) < Γl(T );
0, otherwise.

(7)

The value of ∇(T ) could be positive (or negative) depending

on whether the ratio sample observed is above (or below) the

upper (or lower) safe margin Γh(T ) (or Γl(T )). Thus, ∇(T )
is zero when the ratio observed is within [Γh(T ) , Γl(T )].

2) Stateful Residuals: Our framework now maintains the

sum of residuals between the ratio value and the Γh(T ) and

Γl(T ) over a sliding frame of past K time windows. We

denote this sum as RUC(T ). To calculate this metric. Now,

the framework calculates RUC(T ) over a sliding frame of past

K time windows as:

RUC(T ) =
T
∑

j=T−K

∇(j). (8)

D. Optimizing Standard Limits of RUC(T )

We need to calculate an upper and a lower threshold from

the RUC values that prevent underfitting and overfitting and

improves detection performance in the test set. The procedure

for calculating the upper and lower thresholds is similar.

Algorithm 1, shows the method for τmax.

For this, we define a cost C, and penalty P , as the loss

functions. The cost and penalty function represents the loss

due to missed detection and false alarms respectively. One

key consideration in time series attack detection is to minimize
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Figure 5: Parameter Selection from Cross Validation.

false alarms, since the actual probability of being under attack

is much lesser. Therefore, seemingly low false alarm rates,

do not necessarily indicate a good usable attack detector.

Therefore, we need to give more importance to the false

alarms. Hence, the loss due to false alarm (penalty P ) gets

more weight, compared to the loss due to missed detection

(cost C) as is evident in Algorithm 1. In the end, we choose

a threshold τmax (and τmin) which minimizes the absolute

difference between total cost and penalty values for the positive

RUC samples (and negative RUC samples).

Algorithm 1 Calculate τmax

Input: list of τ : [τ ]
Result: τmax

for T, [τ ] do
if RUC(T ) > 0 then

if RUC(T ) < τ then

Cmax :
|τ−RUC(T )|

w
else

Pmax : w|RUC(T ) − τ |
end

end
end
τmax = argminτ |sum(Cmax) − sum(Pmax)|

The frame size K and weight w of C and P can be

determined optimally, by using a small cross validation set

with a few attack samples and test what values of K and w
are best. We plot the Receiver Operating Characteristic (ROC)

curve for the cross validation set (See Figs. 5a and 5b) for

various values of K and w, and choose that combination that

gives the steepest ROC curve.

E. Detection Criterion in Test Set

The main idea behind attack detection is that RUC in the

test set (RUC(TC)) should not deviate from the standard limit

obtained from the training set. We first calculate the stateless

residuals for each time window of the testing set TC such

that Γh(T
C) = Qr(Th)+κopt and Γl(T

C) = Qr(Th)−κopt,

where κopt is the margin that resulted in the optimal standard

limit. The historical value of the ratio on that time window

Qr(Th), where T c is the current time window and Th is the

corresponding time window in the training set, Γhigh(T
c) and

Γlow(T
c) are the safe margins at T c of the test set.

From Γh(T
C) and Γl(T

C), we calculate the RUC(TC)
using Eqn. 9. Then we check whether RUC(TC) violates the

standard limit range identified during training set.

RUC(T c) :

{

∈ [τmin, τmax],No Anomaly;

/∈ [τmin, τmax],Anomaly.
(9)
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Figure 6: Anomaly Detection for Additive Attack.
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Figure 7: Anomaly Detection for Ramp and Mirroring Attack.

V. EXPERIMENTAL RESULTS

Using the LBNL PMU dataset (see Sec. III), we conducted

extensive experiments for different falsification margins and

attack strategies. For our experimental results, the first seven

days are the training set and the next two days of data is used

for cross validation and the remaining data are testing set. We

divide this section into two parts: (1) Snapshot Results that

show how our method works under several attack strategies

and types (2) Performance Evaluation that shows the sensitiv-

ity versus the false alarm across varying attack margins.

Snapshot Results: We randomly selected a period from the

test set and introduced an attack on the current magnitude from

A6 PMU with δavg 1 p.u (which is approximately 0.16 amps).

Tier 1 detection scheme to infer the presence of an attack is

shown in Fig. 6a and subsequently tier 2 is applied to confirm

the presence of the attack as shown in Fig. 6b. The detection

of the ramp and mirroring attacks are shown in Fig. 7a and

Fig. 7b. For both of these types, we have randomly selected a

period of 15 minutes and introduced the respective attacks.

Performance Evaluation: For performance evaluation, we

generate the ROC curve that characterizes the trade-off be-

tween the probability of attack detection vs. the probability of

false alarm. we vary the δavg from 1 p.u to 2.5 p.u (≈ 0.4

amps) using a step strategy to show the ROC for the additive

attacks in Fig. 8a. A comparative analysis of ROCs of additive,

deductive, and alternating attacks for an attack margin of 1 p.u.

is shown in Fig. 8b. A report on accuracy (A), false positive

(FP), and false negative (FN) for different attack margins in

case of deductive and alternating attacks is given in Table I.

Table I: Experimental Results.

Attack On Attack Type Margin(p.u.) A(%) FP(%) FN(%)

Curr. Mag. Deductive 1 99 1 1

Curr. Mag. Deductive 1.5 100 1 0

Curr. Mag. Alternating 1 91 1 9

Curr. Mag. Alternating 1.5 99 1 1
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(a) ROC for Additive Attack.

0 0.05 0.1 0.15 0.2 0.25

False Positive Rate (FPR)

0

0.2

0.4

0.6

0.8

1

T
ru

e 
P

o
si

ti
v
e 

R
at

e 
(T

P
R

)

Additive

Deductive

Alternating

(b) ROCs for δavg = 1 p.u.

Figure 8: Performance Analysis using ROCs.

VI. CONCLUSIONS

In this work, we presented a real time anomaly based attack

detection for current magnitude falsification in PMU data

streams. We showed that harmonic to arithmetic mean ratios

can be used an effective invariant that is stable without attacks

but show changes during attacks. We showed that even if the

attacker has knowledge about the underlying time series we

are still able to identify anomaly with a low false alarm rate

in real time. Also, unlike many existing bad data detection

methodologies, it does not require the topology of the grid

network. In future, we will extend the idea to capturing voltage

and phase angle falsification, and validate effectiveness against

bigger PMU networks.
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