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ABSTRACT

Compromised smart meters reporting false power consump-
tion data in Advanced Metering Infrastructure (AMI) may
have drastic consequences on a smart grid’s operations. Most
existing works only deal with electricity theft from customers.
However, several other types of data falsification attacks are
possible, when meters are compromised by organized rivals.
In this paper, we first propose a taxonomy of possible data
falsification strategies such as additive, deductive, camou-
flage and conflict, in AMI micro-grids. Then, we devise a
statistical anomaly detection technique to identify the in-
cidence of proposed attack types, by studying their impact
on the observed data. Subsequently, a trust model based
on Kullback-Leibler divergence is proposed to identify com-
promised smart meters for additive and deductive attacks.
The resultant detection rates and false alarms are minimized
through a robust aggregate measure that is calculated based
on the detected attack type and successfully discriminating
legitimate changes from malicious ones. For conflict and
camouflage attacks, a generalized linear model and Weibull
function based kernel trick is used over the trust score to
facilitate more accurate classification. Using real data sets
collected from AMI, we investigate several trade-offs that
occur between attacker’s revenue and costs, as well as the
margin of false data and fraction of compromised nodes. Ex-
perimental results show that our model has a high true posi-
tive detection rate, while the average false alarm rate is just
8%, for most practical attack strategies, without depending
on the expensive hardware based monitoring.
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1. INTRODUCTION
Advanced Metering Infrastructure (AMI) is one of the el-

ementary units of the smart grid technology, which collects
data on loads and consumer’s power consumption [10], from
Smart Meters installed on the customer site (see Fig. 1).
Such data play a pivotal role in several critical tasks such
as automated billing, demand response, load forecast and
management [10].

Figure 1: Architecture of AMI

Apart from automated billing, (already in use), strategic
decisions are expected to be taken by future smart grids,
based on the power consumption data. For example, these
data will have implications on tasks such as daily and crit-
ical peak shifts [22]. When the consumption increases be-
yond a certain critical limit, emergency ‘peaker plants’ are
currently used by most utilities for additional power gener-
ation to meet the demand. However, such peaker plants are
extremely carbon as well as cost intensive. In the modern
grid, the utility will also have the option for automated de-
mand response where utilities pay customers to shut certain
appliances temporarily (peak shifting) to obviate the need
for additional generation [21]. In general, an accurate short
or long term data on loads and consumption will aid in accu-
rate demand response, load forecast and planned generation
in the future smart grid. Hence, the integrity of the data
generated from the AMI is of utmost importance.

Defense against falsification of power consumption data
from AMIs, has largely focused on electricity theft [3, 7, 9,
17], where individual customers are primary adversaries who
report lower than actual usage for lesser bills. Since isolated



smart meters belonging to rogue customers reduce the value
of power consumption, we term such adversarial strategy as
a Deductive mode of data falsification.
However, it has been widely acknowledged that given the

cyber and interconnected nature of AMI, it could poten-
tially be the target of powerful and organized adversaries
such as rival nation states, utility insiders [20], organized cy-
ber criminals and business competitors [4]. Such adversaries
can compromise several smart meters and then spoof false
power consumption data [7] from smart meters. Powerful
and organized adversaries are more equipped to crack/leak
cryptographic secrets, have a higher attack budget, and pos-
sess the ability to simultaneously attack other elements of
the grid (e.g., audit logs, transformers meters) in order to
avoid easy consistency checks on false data. Existing re-
search does not focus on defense against such adversaries
and is only restricted to attacks from isolated adversaries.
Additionally, the goals of these organized adversaries are

not just restricted to monetary benefits on the customer side
that result from electricity theft. As a recent real example,
in Puerto Rico [20] a manufacturer and a utility insider col-
luded to install a large number of tampered smart meters
that reported higher than actual power consumption. We
term such an attack as Additive mode of data falsification.
Conversely, an additive attack launched by a rival utility on
its competing company’s meters may induce loss of business
confidence by the customers of the victim company, due to
higher bills as reported in [19]. A class action lawsuit filed
against a victim utility was reported in this case. If the
utility participates in demand response, then utility may
lose revenue from additive attacks for undue compensation
payed to customers for induced peak shifts. Indirectly, ad-
ditive attacks can be triggered when a load altering attack
(LAA) [11] occurs on the individual appliances of a Home
Area Network (HAN), thus increasing the net consumption
sensed by the smart meter. It may also be noted that rival
nations, businesses, or organized cyber criminals may or-
chestrate large scale deductive attacks to cripple the utility
companies through revenue losses. Additive and deductive
attacks are termed as ‘simple’ attack types.
Furthermore, we argue the possibility of mixed attack

types on the smart meter data. For example, a balanc-
ing additive and deductive attack with the same margin of
falsification of either type, could evade mean aggregate de-
mand check/forecast models. We term such a strategy as
a Camouflage attack, which may be motivated for gener-
ating lesser bills to one set of customers at the expense of
the other set. Such attacks may stay undetected, without
raising any suspicion because the total inflow and outflow of
power measured at the transformer meters, and the total de-
mand and reported usage remain unchanged. The attacker
in such a case need not attack other elements in the grid
(for e.g. transformer meters) to prevent easy consistency
checks. In general, random additive and deductive attacks
may simultaneously coexist in the same AMI network, when
launched by different adversaries with conflicting goals. We
term such a scenario as a Conflict attack, which is a mixed
attack type with unequal margins of falsification for each
underlying simple attack type. Existing literature cannot
handle all of the above data falsification strategies.
In this paper, we first introduce a taxonomy of possible

data falsification attacks launched by organized adversaries.
Then we study the statistical properties of the distribution

of power consumption data and analyze the effects of vari-
ous data falsification attacks types on the parameters of the
power consumption data. With the help of the observed
statistical effects, a security incident forensics criterion is
proposed that indicates the presence and the type of at-
tack while discriminating effect of attacks from legitimate
changes. Subsequently, we propose a light weight Kullback-
Leibler divergence based trust model that identifies com-
promised meters with a high detection rate, by exploiting
knowledge of the statistical impact caused by each attack
type, cyclostationarity of overall power consumption pat-
terns, and factoring in for any legitimate change in the con-
sumption patterns.

We use a generalized linear model (GLM) and Weibull
function based kernel trick to extend our trust model, for ro-
bust classification of compromised nodes based on the com-
puted trust values with least missed detections and false
alarms, even for stealthy camouflage and conflict attacks.
We also perform a cost benefit and sensitivity analysis for
both of our attack and defense models. Specifically, we com-
putationally study tradeoffs, such as breakeven time (i.e., the
time required for attacker’s revenue to equal its cost of at-
tack) and breakdown point (i.e., the attack strategy for which
the defense mechanism is no longer able to distinguish the
compromised meters from honest ones). Experimental re-
sults show that our detection technique is able to identify
compromised meters with higher detection rates while incur-
ring lower false positives, than most existing works, under
rational attack strategies that may be employed by adver-
saries. We perform extensive sensitivity analysis to show the
limits of our model.

To the best of our knowledge, our proposed work is the
first effort to establish trustworthiness in AMI against multi-
ple attacks types and organized rivals. Secondly, ours is the
first work that focus on data falsification strategies other
than electricity theft, which can be devised by organized
adversaries rather than rogue customers. Unlike most exist-
ing works, our approach works without meter specific stor-
age and maintenance of fine grained consumption data from
each meter to obviate important privacy concerns [26]. Our
proposed method is also light weight compared to the classi-
cal bad data detection mechanisms. Since our method does
not require installation of additional hardware as in the state
based monitoring, it is more cost effective.

2. RELATEDWORK
Existing work on AMI data falsification can be broadly

categorized into classical bad data detection, and state based
detection. Both categories focus only on the electricity theft.
Classical bad data detection uses techniques such as Support
Vector Machine (SVM), Neural Networks and Auto Regres-
sive Moving Average (ARMA) models. In contrast, state
based detection includes sensor based monitoring, mean ag-
gregate outlier inspections and transformer state estimation.

Classical bad data detection schemes such as Multi-class
SVM and Neural Networks are used in [3, 15] for offline and
retrospective identification of rogue customers stealing elec-
tricity by reporting lower usage. Such techniques contain
a series of seven steps for identifying abnormal customers.
The obvious disadvantage of these approaches are that they
are highly computation expensive, deal with long term ret-
rospective identification, and do not consider organized ad-
versaries or their attack strategies, and require full and fine



grained profiling of each smart meter. A comparative analy-
sis of classical bad data detection schemes is provided in [2]
which concludes that while these schemes require full pro-
filing of each customers’ energy consumption (thus cannot
protect their privacy), the detection rate of most of these
schemes is approximately 60%-70%. Moreover, only two
schemes provide a quantitative false positive rate.
Finally, ARMA based models [9] profile each customer’s

time series data separately to increase accuracy, using ARMA-
GLR detector. However, in most practical cases, the con-
sumption cannot be accurately modeled as an ARMA pro-
cess [3], resulting in the detection rate of only about 62%.
Additionally, several privacy threats [10, 26] are associated
with such approaches since they require customer specific
monitoring and maintainance of fine or coarse grained con-
sumption data.
State based detection techniques like sensor based mon-

itoring [5, 8], transformer state monitors [1] require addi-
tional hardware deployed at various points across the AMI
and distribution network for identifying anomalies. How-
ever, most of them do not identify the compromised meters.
Additional hardware requirement makes such approaches
costly [2]. Some works (e.g., [8]) combines the audit logs for
physical and cyber events in the meter to check for consis-
tency in the data reported. But these approaches are nulli-
fied when the meters are compromised by external adversary
who are intelligent enough to change the audit logs. Further-
more, cyber connected sensors/monitors are also similarly
vulnerable to cyber attacks.
Mean aggregate based outlier approaches used in state

based detection [15, 17] have the advantage that they do
need not store and maintain fine grained meter specific trends
on power consumption. In [17], an arithmetic mean aggre-
gate approach is proposed; but the number of rogue meters
is small compared to the population, hence the aggregate
mean values are not affected enough. They also do not dis-
criminate between legitimate and malicious changes in the
mean consumption, thus incurring a high false positive rate
of around 30%, and consider only electricity theft. Legit-
imate changes in consumption may occur due to weather
and other contextual factors. Approaches focusing on only
arithmetic mean aggregates and median have difficulty to
discriminate malicious changes from legitimate ones when
the margin of false data or the fraction of compromised
nodes is higher. Thus, such approaches suffer from high
false positive rates or lower detection rates. Additionally,
such methods will also fail to identify camouflage and con-
flict attacks as discussed earlier. In [3], a false positive rate
of 28% is reported although the detection rate is high.
Finally, cryptographic approaches [6, 16] may fail to pro-

vide any help as organized adversaries may be able to crack
the cryptographic secrets. Moreover, given the latency crit-
ical nature of functions like demand response and manage-
ment [23], advanced cryptographic defense is impractical due
to additional overhead [14]. This further exacerbates the
vulnerability of the AMI data falsification.
Given the above limitations, we believe there is a dire need

for trustworthy computing approaches based on the anomaly
detection in the data reported by each meter. This motivates
us to propose a novel scheme that provides security forensics
to identify various falsification attacks and a trust model
based on aggregate data monitoring to identify compromised
meters. Hence, our work significantly advances this field of
research.

3. SYSTEMMODEL
We consider a collection of N smart meters reporting

power consumption data to a Data Collector (DC) periodi-
cally and independently. The i-th smart meter, si, records
an actual power consumption data P i

t (act) at the end of
each time slot t. The reported power consumption P i

t (rep)
is equal to P i

t (act) if si is not compromised. However,
P i
t (rep) 6= P i

t (act), if si is compromised by an adversary.
We model P i

t (act) as the realizations of a random variable
P i. The Data Collector piggybacks data from each smart
meter and sends it to the billing utility. The total power
reported at a time by all N meters is sent to a transformer
meter.

To characterize the distribution of P i from the i-th smart
meter, we conducted preliminary investigations on real power
consumption data sets [25], of 200 houses from 16 different
microgrids. Each home consists of one smart meter. We ob-
served that for each house or meter, the power consumption
can be approximated as a log normal distribution. We also
observed that all such log normal distributions are clustered
close to each other; that is, the variance between them is
not arbitrarily large. Fig. 2(a) summarizes the results.

We approximate the aggregate of the individual log nor-
mals using a mixture distribution, which is also lognormal
as evident from Fig. 2(a). We denote Pmix as the random
variable (r.v.) of such aggregate approximate mixture dis-
tribution.

For mathematical tractability and visual intuitiveness, we
transform Pmix on a natural logarithm scale to obtain an
approximate normally distributed r.v. denoted as pmix. Re-
sults of this approximate normal mixture pmix, for different
months in the recent past is depicted in Fig. 2(b). Note
that both Pmix and pmix, do not reveal any consumption
pattern for each specific meter, but only a general trend on
the consumption.

We also denote pit(act) = ln(P i
t (act)), as the effective

power consumption report recorded at each meter si on a
log scale at any time slot t. Note that, for certain other data
sets (like a wider area monitoring), with more than one con-
sumption clusters, as in [15], our approach can be applied to
each such cluster independently. The proposed trust model
calculates and updates trust of each smart meter at the end
of each month. We assume a window size of T slots per
month based on how t is slotted. To prove the generality,
we repeated the experiments for a different AMI data set [3],
and reported similar observations like Figs. 2(a) and 2(b)
as shown in Appendix B.
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Figure 2: Power Consumption Behavior: (a) Actual
(b) Normal Mixture



3.1 Threat Model
We consider the following assumptions in our threat model.

3.1.1 Types of Adversary

We assume that the organized adversary belongs to either
rival nation states, business competitors, utility insiders or
cyber criminals, possessing the ability to compromise several
smart meters by bypassing cryptography.
False power consumption data from a meter can be achieved

in the following ways: (a) manipulation of inputs to the me-
ter, (b) in rest at the meter, and (c) in-flight from the meter.
The adversary then launches data falsification from multi-
ple such compromised smart meters concurrently.A compro-
mised meter in this context means either the input, content,
or output coming from one specific meter is compromised.
We assume rational attackers who may have a long or

short term damage objective. Long term damage requires
evading detection for the maximum possible time, while still
benefiting from attacks. The adversary may accept to face
some initial loss in the hope of evading detection and accru-
ing incremental benefits over time. Examples of long term
adversarial objectives include monetary gains in terms of
electricity pricing and belief manipulation of learning de-
mand forecast models. A short term damage, on the other
hand, requires inflicting the maximum damage in a short
time, before getting detected. Examples of short term ob-
jectives include an attacker aiming to, gain quick revenue
or masquerade a false high demand response. Due to the
contrasting requirements on these two objectives, adversar-
ial decisions such as fraction of compromised nodes ρmal and
the margin of false data are dependent on the nature of time
deadlines associated with such objectives.
Unlike existing works [3], we assume organized adversaries

to be intelligent enough to also tamper with transformer
meters and other portions of the grid, to escape easy consis-
tency checks on false data. We also assume that the smart
meters report the consumed power to a data concentrator on
every time slot (hourly). Compromised Meters spoof false
data on all time slots, however, the attack margin ∆ (ex-
plained below) may be more in peak periods than non-peak
periods, to exploit the time dependent pricing of electricity.

3.1.2 Taxonomy of AMI Data Falsification

We define the manner in which the actual power consump-
tion data P i

t (act) of each meter si is modified as the mode
of data falsification. We identify the following modes:
Additive: The adversary reports P i

t (rep) = P i
t (act) + ∆t,

where δmin ≤ ∆t ≤ δmax. This mode can lead to loss of
business confidence from customers due to higher bills and
masquerade a critical peak leading to remote disconnect of
customer appliances, thereby causing utilities to pay undue
incentives.
Deductive: The adversary reports P i

t (rep) = P i
t (act) − ∆t,

where δmin ≤ ∆t ≤ δmax. This mode can lead to loss of
revenue for power utility companies.
Camouflage: The adversary divides the compromised meters
into two teams equal in number, which simultaneously adopt
an additive and deductive mode, respectively. This mode
can favor smart meter of one power utility at the expense
of others, and has less impact on the strategic decisions in
the grid. It cannot be detected by simple mean comparison
approaches, because no suspicion is raised due to negligible
change in the total reported power consumption.

Conflict: It is a scenario where additive and deductive at-
tacks coexist simultaneously, but are not necessarily bal-
anced. Such a scenario represents random attacks possible
if there are more than one uncoordinated adversarial teams.

3.1.3 Margin of Falsified Data

The value ∆t is generated randomly within an interval
[δmin, δmax], for δmin, δmax > 0, and accordingly added to
or deducted from the actual power consumption. Note that,
arbitrarily high δmax may facilitate intuitively easy detec-
tion, while very low δmax hardly accrues any revenue. The
average value of ∆t is represented as ∆avg.

Apart from the type of attack, the attacker chooses a value
of ∆avg in the interval [δmin, δmax] as part of its attack strat-
egy. ∆avg may be high or low depending on the amount of
damage it wants to inflict, and the short or long time horizon
of the attack. All units of ∆avg values discussed throughout
the paper is in Watts.

Since the distribution of power consumption is unimodal,
the attacker refrains from any strategy that would make
the resultant distribution, multi modal. In that sense, a
uniformly distributed random noise injected into the actual
smart meter data does not change the overall shape of the
distribution but only effects its parameters. Such variants
of uniform distribution over time is adopted from [3].

From the defender’s perspective, we define the breakdown
point BDP = (∆avg, ρmal), as a combination of ∆avg and
ρmal values for which the proposed defense model is no
longer able to identify between compromised and honest
nodes.

3.1.4 Attacker Budget

We assume that organized adversaries compromise a cer-
tain number Mmax of the N smart meters based on the
attack budget. The fraction of compromised nodes is ρmal =
Mmax

N
. Hence, ρmal can be high when N is small.

We assume a fixed cost Cattack is required to compromise
a smart meter. We refer to the budget as the total cost TC
of the attack, such that TC = Cattack×Mmax. We term the
attacker’s revenue as RR over an attack period of D days in
terms monetary gain in the electricity bills.

We define TBE as the breakeven time, that is the time
required for the revenue accrued from attacks to match the
total cost TC. The tradeoffs that impact TBE and BDP is
studied in Section 6.

In certain implementations, a transformer meter checks
the total inflow of power versus total outflow. If δavg is high,
then a smart adversary can may compromise the correspond-
ing transformer meter, to avoid easy suspicion. Only simple
attack types like additive and deductive would require the
adversary compromising the transformer meter, given that
in camouflage and conflict attacks, the total reported power
consumption is not affected significantly.

3.1.5 A Concrete Example

Suppose in an AMI facility of N = 100 smart meters,
Mmax = 20 implying ρmal = 0.2. The actual aggregate
power consumption distribution has a mean and a standard
deviation of µA = 2000 units and σA = 100 units, respec-
tively. If the amount of additive error to be introduced in
the final mean is Λ = 500 units, the ∆avg for each mali-
cious node is given by ∆avg = Λ∗N

Mmax
= 2500. Since false

noise values are generated uniformly at random in the range
(δmin, δmax), ∆avg = δmin+δmax

2
. Therefore in this example,



if δmin = 128, as the minimum false value to be considered as
attack, then δmax = 4782. Here δmax and ∆avg are a rather
high value, which may easily be detected, given the nature of
power consumption. However, if ρmal = 0.4, then to achieve
the same Λ = 500, it is sufficient to have δmax = 2372 and
∆avg = 1250, which are more believable values.
The above proves that with higher ρmal, the adversary can

afford to decrease the margin of false data to avoid getting
intuitively and easily detected. Although the cost increases
with higher ρmal, the adversary may reduce the chance of de-
tection, and look to recover the initial cost in the long term.
This is however not an option for adversaries with short
term objectives. In this case, the attack revenue/payoff and
the cost have to breakeven within a short time deadline.
This implies very high ρmal and low ∆avg do not lead to a
practical attack strategy, since low ∆avg accrues slow attack
revenue per unit time. In the experimental results, we study
the trade-offs between ∆avg and ρmal.

4. STATISTICAL EFFECTS OF VARIOUS

ATTACKS ON AMI DATA
In this section, we study how different data falsification

strategies affect the attacked mixture distribution from the
actual (authentic) mixture distribution from real data gath-
ered from 215 smart meters from a solar Village [25]. In
particular, we show effects of various attack types, on the
Arithmetic Mean (AM), Geometric Mean(GM) and Har-
monic Mean (HM). The mathematical definitions of the dif-

ferent means are AMt =
∑N

i=1
xi
t

N
, GMt = (

∏N

i=1
xi
t)

1

N ,

HMt =
N

∑
N
i=1

1

xi
t

.

Based on the simultaneous changes between the various
means, a security forensics criterion is provided to unravel
the type of data falsification attack. This criterion that is
based on the absolute difference (denoted by AD) between
AM and HM of the observed mixture distribution, can also
help to distinguish between a legitimate change and ma-
licious change. Subsequently, a robust mean µR is derived
exploiting the contrasting robustness of AM,GM,HM mea-
sures to various types of attacks.
All trends on power consumption use pi values on an ln

scale. For comparison between legitimate and attacked data,
the reference authentic distribution is called historical distri-
bution denoted by phismix. The attacked distribution is called
the observed distribution denoted by pobsmix.

4.1 Investigative Comparison under Various
Attacks

4.1.1 Authentic Data on Different Years

Fig. 3(a) shows the actual mixture distribution for two
different years (2014 and 2015) for the month of September.
We can observe, that the difference between the distribu-
tions is not large. In fact, the mean, and higher moments
are very similar. This is attributed to similar coarse grained
usage patterns given the weather in a particular month at
the same location. Hence, power consumption at a micro-
grid is cyclostationary in the wide sense. The AM for 2014
and 2015 are 7.053 and 7.07 respectively. The HM for the
same are 6.680 and 6.675 respectively.
However, sometimes it may happen that the same month

in two different years experience varying weather conditions
at certain locations. For example, winter 2015 was much

warmer than winter 2014 in certain geographical locations
in USA. For example in this data set, AM is 6.88 and 6.58,
while the HM are 6.52 and 6.23 respectively. Such a differ-
ence is shown in Fig. 3(b). Hence, we conclude that com-
parison of a meter’s data with the parameters of observed
(current) mixture distribution (pobsmix) is equally important,
as is the comparison with the historical values of power con-
sumption.
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Figure 3: Legitimate Data Comparison: (a) Septem-
ber (b) November
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Figure 4: Comparison: (a) Honest vs. Additive (b)
Honest vs. Deductive

4.1.2 Authentic Data vs. Additive Attack

Fig. 4(a) shows the comparison between honest data set
phismix and the same data set polluted with additive falsifica-
tion, with ∆avg = 800 and ρmal = 0.40 for the month of
October. Due to higher than actual power consumption re-
ported, the observed AM is highly shifted from the original
AM. Hence, when using the observed mixture distribution
for anomaly detection, the observed AM is biased towards
the additive false data. We observe instead that the har-
monic mean (HM) of the observed mixture, although shifted,
is closer to the original AM. Hence false readings will be lo-
cated farther away from the observed HM. Hence HM is a
more robust aggregate in unraveling positive outliers. An-
other key observation is that the absolute difference between
HM and AM, given by AD = |AM −HM | is higher in the
attacked data set than the legitimate data set. Geometric
mean (GM) is an intermediate value, but slightly closer to
the AM value as compared to HM.

4.1.3 Authentic Data vs. Deductive Attack

Figure 4(b) shows the results for the case of deductive
attacks where ∆avg = 500 and ρmal = 0.40 for October.
Intuitively, the observed mixture distribution, shifts to the
left, due to reporting of lower than actual consumption. As
a result, the observed AM is lower than the actual AM.
Nonetheless, the observed HM is even lesser than observed
AM since HM ≤ AM is always true. Hence for deductive
attacks, the observed AM is more robust than HM. However,
AD still increases.



Note that, the maximum possible bias introduced in the
observed AM under deductive attacks is less than that of
additive attacks, because the feasible margin of deductive
false data is bounded by zero, because P i

t (rep) ≥ 0.
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Figure 5: Comparison: (a) Honest vs. Camouflage
(b) Honest vs. Conflict

4.1.4 Authentic Data vs. Camouflage Attack

Fig. 5(a) shows the effect of camouflage attacks where
∆avg = 960 and ρmal = 0.40. There is a negligible change
in the AM. However, we observe that there is a shift in the
HM of the observed mixture, thereby causing the resultant
AD to increase.

4.1.5 Authentic Data vs. Conflict Attack

Fig. 5(b) shows the effect of conflict attacks where ∆avg is
700 and 500 for additive and deductive attacks, respectively,
with ρmal = 0.40. There is a little change in the AM. How-
ever, we observe a shift in the HM of the observed mixture.
Hence, AD increases.

4.2 Security Incident Forensics
Based on the observations from comparison between au-

thentic versus attacked data distributions, we identified a
security incident forensics criteria, based on AD and the si-
multaneous change/bias in the observed AM, HM, and GM
that indicate presence and type of data falsification (security
incident). Based on this knowledge, we calculate a robust
aggregate µR, which is less biased than the otherwise ob-
served arithmetic mean values.

4.2.1 Detecting the Anomaly from Legitimate Change

We study how each attack type impacts various statistical
parameters and identify a criterion (see Eqn. 1)that reveals
the presence and the type of attack launched. From our
statistical study, we found that AD = |AM−HM | could be
an effective indicator for anomalies.
Fig. 6 shows the comparison of instantaneous values of

AD between historical (2014) and current non-attacked dis-
tribution (2015) for different years. It can be verified that
under no attacks, the average value of AD is about 0.45
for both years, although contextual factors may have caused
AM, GM and HM to readily change over time. The low-
est ADmin and highest ADmax values of AD for two years
are between 0.35 and 0.55 Hence, AD is almost stable for
legitimate data sets, and we call this range ADnorm

In contrast, from Fig. 7, it is easy to conclude that for all
attacks scenarios, the ADobs is larger than ADnorm range.
This figure clearly shows that when additive, deductive,
camouflage, and conflict attack samples were introduced in
the current data set, starting from the 250th day of 2015,
AD has increased for each attack type.

ADobs :

{

∈ ADnorm No Falsification ;
> ADnorm Falsification Occurred;

(1)

Table 1: Effects of Different Attacks on AD
Parameter Actual Add Deduct Camo Conf

AM 7.053 7.68 6.67 7.04 7.26
GM 6.860 7.35 6.29 6.65 6.79
HM 6.680 6.92 5.88 6.02 6.11

AD = |AM-HM| 0.373 0.76 0.79 1.02 1.15

From the above, we conclude that an authentic change
in the observed distribution may cause the mean consump-
tion to increase or decrease but ADobs remains the same
as compared to the historical range of values ADnorm =
[ADmin, ADmax]. An additive attack causes the mean con-
sumption to increase but also causes ADobs to increase com-
pared to historical values. This way a legitimate versus a
malicious change can be distinguished. A deductive attack
causes the mean consumption to decrease and causes ADobs

to increase from the historical range. Similarly, camouflage
and conflict attacks do not have much change in the mean
consumption but causes a large increase in the ADobs from
the normal. In this way, it is possible to detect which type
of data falsification has been launched.

Table 2: Concluding the Security Incident Type
AD AM HM GM Conclusion

Increased Increased Increased Increased Additive
Increased Decreased Decreased Decreased Deductive
Increased Same Decreased Decreased Camouflage
Increased Any Any Any Conflict

Same Don’t Care Don’t Care Don’t Care No Attack
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Figure 6: AD under No Attacks

4.2.2 A Robust Mean for Different Attacks

The manner and extent to which different observed mean
aggregates like HM,GM and AM get biased by different
attacks is unique. We exploit this property for the calcu-
lation of robust mean. Additionally, the magnitude of the
bias depends on ∆avg and/or ρmal. Hence, an adjusted ro-
bust mean helps to get an approximate value closer to the
original mean. Note that, the highest possible ∆avg is lesser
in deductive attacks than additive ones, because the feasible
margin of deductive false data is bounded by zero. As the
margins of false data or compromised fraction increases, the
observed means get biased from the actual mean.

From the statistical observations, we conclude that HM is
more robust than AM to the effect of additive attacks, due
to slower increase in HM as opposed to AM. However, this is
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Figure 7: AD in Observed Data: Various Attacks

not the case for deductive attacks because of HM ≤ GM ≤
AM , causing HM to be even lesser than the already biased
AM. But, GM +AD is more robust than AM for deductive
attacks, and results show that it is a good approximation
to the actual mean. From the example in Table 2, it can
be verified that for deductive attack, the robust mean µR =
6.29 + 0.79 = 7.08 is closer to the actual mean 7.05. For
camouflage attacks, AM is the most robust and hence µR is
set as the AM. For conflict attacks, GM is an intermediate
robust choice as it shows a relative stability to both partially
positive and negative outliers.

Table 3: Robust Aggregate guided by Incident Type
Security Incident Choice of Aggregate µR

Additive HM
Deductive GM+AD
Camouflage AM
Conflict GM

No Attack AM

5. AN ENTROPY BASED TRUST MODEL
We pursue a light weight supervised learning approach

for defending against data falsification from compromised
smart meters. A prior historical data set is considered as
the authentic distribution of power consumption. From the
historical data set, a true proximity distribution denoted as
Xi for each smart meter is generated based on its reported
consumption’s proximity to the arithmetic mean of the au-
thentic data set. Since the authentic historical data set is
attack-free, the measure of mean is arithmetic mean (AM),
denoted by µ.
Then an observed data set is considered with data from

spurious meters. We define µR as the robust mean of the
observed distribution calculated as discussed in Section 4
based on the occurred security incident. The current prox-
imity distribution Y i of each smart meter si is calculated
based on the proximity of its reported consumptions to µR.
In contrast, to the historical distribution, when an attack is
present, we set µR according to Table 3.
If the true distribution is very different from the current

distribution, it is an indication that this meter is unusu-
ally far from the aggregate. This difference is measured as
Kullback-Leibler divergence (also called KL Distance) which
measures the relative entropy between the two distributions.
The higher the divergence between the two distributions, the

more the indication of anomalous behavior. The trust of a
meter is calculated at the end of the window (in days). The
total number of observations (T ) over the window depends
on how time is slotted.

5.1 True and Current Proximity Distributions
We introduce a binary random variable Xi = {0, 1} for

each meter si, for i = 1, . . . , N , which acts as a historical
reference distribution. If the historical data reported pit(rep)
at time t from meter si falls within one standard deviation
of µt, then Xi = 1, else 0. Formally,

Xi(t) =

{

1 if pit(rep) ∈ {µt ± σt};
0 otherwise

(2)

where Xi(t) follows a Bernoulli distribution with parameter
r, that is the probability of Xi = 1 is r, and the probability
of Xi = 0 is 1− r.

Suppose, S(X) be the variable that denotes the number

of successes, that is S(Xi) =
∑T

t=1
Xi(t). Let S(X) = k be

the observed value of the variable.
Similarly, we have a binary random variable Yi for the cur-

rent distribution of each smart meter, such that the proba-
bility of Y = 1 is q and the probability of Y = 0 is 1− q. In
this case, the number of successes is denoted by a variable
R(Yi) =

∑T

t=1
Yi(t). Let l be the observed value of R(Y ). If

an anomaly has been detected through monitoring the HM,
AM and AD, then µRt is assigned accordingly, and the cor-
responding standard deviation σRt is calculated. In absence
of attacks, µRt = µt. Thus,

Yi(t) =

{

1 if pit(rep) ∈ {µRt ± σRt};
0 otherwise

(3)

Intuitively, in absence of attacks the distribution of Y

should be very close to X. On the contrary, the two distri-
butions should show a difference when an attack is present.

5.2 Estimating Parameters of True and Cur-
rent Proximity Distributions

Next we need to estimate the parameters r and q for cor-
responding distributions Xi and Yi. An obvious estimate
is the minimum variance unbiased estimate (frequentist),
which is the sum of all successes divided by the total num-
ber of observations T . However, this approach may cause
r = 0, q = 0, or r = 1, q = 1, for which the relative entropy
(see Eqn. 9) is undefined. Moreover, frequentist probability
unbiased estimator makes sense only if there is a large set of
observations [13]. However, since our trust model works on a
shorter horizon of time (typically on a few days or monthly
basis), such approaches are improper. Hence, we need to
accommodate a Bayesian approach for estimation of r and
q, so it is theoretically sound and mathematically tractable.
Since the following is true for all meter’s si, we drop the
suffix i from the notational simplicity.

First, we estimate the parameter r. We prove that the
estimated probability r = k+1

T+2
, where k is the realization

of the total number of successes observed. Thus S(X) = k

follows a binomial distribution with parameter r.
Hence, the probability of observing exactly k successes out

T times, given the probability of success of each trial was r,
is given by,



P (S(X) = k|r) =

(

T

k

)

r
k(1− r)T−k (4)

The Bayesian posterior estimate of r, based on prior T ob-
servations by Bayes theorem, is given as:

P (X(T + 1) = 1|S(X) = k) =
P (X(T + 1)), S(X) = k)

P (S(X) = k)
(5)

The denominator is the marginal probability of P (S(X) =
k) marginalized over all possible outcomes of r. Hence,

P (S(X)) =

1
∫

0

(

T

k

)

r
k(1− r)T−k

f(r)dr (6)

Assuming conditional independence between S(X), r and
Xi(t+ 1) of the prior and likelihood can be solved as:

P (Xi(T + 1)), S(X) = k) ⇒

=

1
∫

0

P (X(T + 1) = 1|r)P (S(X) = k|r)dr (7)

Since there is no prior information on r, we assume a non-
informative prior such that f(r) = 1, for the above Eqn (6)
and Eqn. (7). Plugging in Eqn. (6) and Eqn. (7) to Eqn. (5),
it can shown that:

P (Xi(T + 1) = 1|S(X) = k) =
k + 1

T + 2
= r (8)

Hence, r = k+1

T+2
. Similarly, q = l+1

T+2
.

It can be verified that r, q 6= 0, 1. Hence, the logarithms of
distributions X and Y in terms of r and q are always defined
and exist as evident from Eqn (9).

5.3 Kullback-Leibler Divergence based Trust
Model

We adopt the Kullback Leibler divergence to measure the
difference between the historical distribution Xi and the ob-
served distribution Yi for a smart meter. It may be noted
that Xi and Yi are not consumption patterns but a trend on
proximity to the aggregate. Subsequently, the KL distance
is transformed into a trust value between zero and one. The
trust values are fed to a generalized linear model based logit
link function for linearly separable trust values that facili-
tate classification between compromised and honest meters
through a single threshold.
The KL distance between two distributions X and Y for

a smart meter si, is given by:

Di(Xi||Yi) = (1− r)× ln
(1− r

1− q

)

+ p× ln
(r

q

)

(9)

The Di(X||Y ) is a positive real value. The final trust value
of a smart meter si, is given by:

Qi =
1

1 +
√

Di(X||Y )
0 ≤ Qi ≤ 1 (10)

Any classification problem such as identifying compro-
mised meters from honest ones, require a threshold for sep-
aration. In order to ensure the efficiency of our method, our

goal is to ensure that the compromised and honest meters
form two clearly linearly separable clusters in terms of their
trust values. However, for certain attacks, especially cam-
ouflage and conflict attacks, the distributions may not be
sufficiently far from each other to ensure linear separation
through a threshold.

To address this problem, we introduce a kernelized trust
metric that maps the trust values into a higher dimension.
We use a light weight two step kernel mapping function.
The first step is the use of a generalized linear model (GLM)
predictor (logit link function) where Qi is mapped intoW i ∈
IR as follows.

W i = log2

(

Qi

1−Qi

)

(11)

The second step is a Weibull scaling function converting
W i into the final kernelized trust metric KT i ∈ [−1,+1]:

KT
i =







1− e−|W i| if W i > 0;

−(1− e−|W i|) if W i < 0;
0 if W i = 0

(12)

Eqn. (11), is a logit link function used in logistic regres-
sion for binary classification problems. Since, our problem
is to classify malicious from honest, the corresponding link
function for such response variables is a logit function.

Remark on privacy concerns: Note that, our defense
model does not require the storage and maintainance of ac-
tual power consumption trends of each individual house.
Rather, we only store the information of Xi, thus less pri-
vacy intrusive. So, by policy the individual P i

t (rep) need not
be used and may be discarded. In particular, the data collec-
tor only knows the historical mixture distribution pmix and
the historical private parameter r of each house. The q pa-
rameter is the current private parameter of each house. The
challenge is resolved by depending on phismix rather than the
individual pi distribution. Since r and q are compared for
KL divergence, both comparison to history and comparison
with current mixture distribution is achieved in a privacy
preserved manner.

6. PERFORMANCE EVALUATION
The data set from three residential micro-grids ofN = 215

houses, was obtained from PeCan Street Project [25], con-
taining hourly power consumption data from a solar village
near Austin, Texas. We studied some results of anomaly
detection and trust model for various attacks. To display
the performance of the defense models, a 30 day data from
2014 was used as a training data set. The training data set
is used to derive a threshold (through K-means clustering)
that linearly separates between honest and compromised la-
bels based on their trust score. A data set for a 30 day
period in 2015 is used a testing data set.

The malicious data sets were generated from the real data
samples that were fed into a simulated AMI micro-grid, and
ρmal and ∆avg were carefully chosen to avoid overfitting
or underfitting. In the compromised testing data set, the
resulting distributions of each smart meter is modeled as
the distribution Y . The KL distance is calculated for each
smart meter, and subsequently their trust values are plotted.
Then, the threshold obtained from training is applied

6.1 Training Set
We use a training data set from 36 houses and use power

consumption reported in 2014 for a month. We label some



meters as compromised and alter their reported values and
plot the corresponding trust values. We use these exper-
iments to calculate a threshold that can linearly separate
between compromised and non-compromised nodes. We use
a logistic regression classifier to find the optimal linearly sep-
arable classifier. We choose ρmal = 0.4, and ∆avg = 1024W
which are intermediate values to prevent overfitting or un-
derfitting. The results of training for various attack strate-
gies are shown in Figs. 8(a) and 8(b).
Figure 9(a) shows the training sets for camouflage attacks

with kernelized trust metrics bounded between [−1,+1], for
δavg = 960W and ρmal = 0.45. The kernel mapping function
yield a clear separation between honest and compromised
labels even for stealthy camouflage attacks. We derive the
threshold as 0.155. Fig. 9(b) shows the training results for
conflict attacks where ∆avg is 900 and 600 for additive and
deductive attacking meters respectively and ρmal = 0.45.
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Figure 8: Training Data: (a) Additive; (b) Deduc-
tive
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Figure 9: Training Data: (a) Camouflage; (b) Con-
flict

6.2 Performance with Testing Set
We use the data set from 2015 as testing set. We set

ρmal = 0.4 and ∆avg = 768W . More results with different
ρmal = {0.2, 0.3} are presented in Appendix A to prove the
scalability. The results for additive and deductive attacks
are shown in Figs. 10(a) and 10(b). They exhibit a clear
separation between honest and compromised nodes with a
false alarm rate of 8.3% in the additive case, and 9.3% in the
deductive case. The missed detection rate is 0% for all attack
modes, and no compromised meter remains undetected.
Figure 11(a) shows the results for the testing set for δavg =

880W , demonstrating a clear difference between honest and
compromised nodes. The false alarm rate in this case is
11.6%.
For conflict attacks, about 48% of the total meters are

compromised, with additive attack of δavg = 1300W , while
the deductive attacks with δavg = 900W . This is a case
which considers random attacks from unorganized rivals.
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Figure 10: Testing Data: (a) Additive; (b) Deduc-
tive

From Fig. 11(b), we show that our approach works with a
high detection rate of 98% and the false alarm rate is about
7%. All the testing results, show improvement from most
existing works in [2].
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Figure 11: Testing Sets: (a) Camouflage; (b) Con-
flict

6.3 Trust Values over Time
Figs. 12(a) and 12(b) show the trust value comparison

between an honest meter and a compromised meter over
time. Fig. 12(a), shows trust values calculated every 30 days
while Fig. 12(b) shows them for every 10 days. The first
90 days are attack free, and hence trust values are above
the threshold. After the 90th day, the attack starts, and a
decrease in the trust of compromised meter is clear while
the honest meter’s trust is unaffected.
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Figure 12: Trust Propagation Over Time: (a) Every
30 days; (b) Every 10 days

6.4 Breakdown and Breakeven Point Analysis
We model the attacker revenue RR over an attack period

of D days in terms monetary gain in the electricity bills as:

RR =
∆avg ×Mmax × η ×D × E

1000
(13)

where ∆avg is the average attack margin, η is the number
of reports a day, and E is the per unit (KW-Hour) cost of
electricity in dollars.



Recall that the breakdown point occurs for some ∆avg and
ρmal such that the proposed model is no longer able to dis-
tinguish between compromised and honest nodes because
the average trust values of compromised meters are higher
than honest ones. We study the existence of such break-
down points, the feasibility of the adversary achieving the
breakdown point and associated cost benefit analysis. This
analysis can be used by the insider attackers to accordingly
design their attack strategy to evade detection.
The breakdown point could be achieved with very high

or low margin ∆avg given ρmal. Very low margins make
short term attacks impossible and very large margins make
attacks very obvious. Therefore, low margins make sense for
long term attacks, but require either a large ρmal or a long
time duration to be effective.
Figure 13 shows different breakdown points for ρmal values

0.10, 0.25, 0.4 and 0.6 for additive attacks over various ∆avg

values. Two break down points exist only for ρmal = 0.6,
which suggest that to evade detection with lower margin of
false data, the adversary has to compromise a large number
of nodes, thus increasing its cost. For lower ρmal, the at-
tacker cannot evade detection, unless ∆ is very small, which
in turn rules out short term attacks and increases breakeven
time (TBE) significantly.
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Figure 13: Sensitivity Analysis over ∆avg: Additive

The breakdown points for deductive and camouflage at-
tacks for different ρmal values are shown in Figs. 14 and 15.
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Figure 14: Sensitivity Analysis over ∆avg: Deductive

Table 4 numerically shows that for a very low margin
∆avg = 256W and ρmal = 0.5, the adversary needs 22
months to recover its initial investment and start to gain
profit. This acts as deterrent to implement such a strategy
although it may evade detection.
Another aspect shown in the plots and Table 4 is that the

breakdown point and attack evasion could be achieved with
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Figure 15: Sensitivity Analysis over ∆avg: Camou-
flage

higher ρmal ≥ 0.42 and a simultaneous higher margin ∆avg

of false data. However, our model ensures the breakdown
happens only at very high levels of ∆avg. This is intuitively
detectable, since the power consumption has a thinner tail,
and most of the power consumptions are below 2500W .

In Table 4 we also observe that when ∆avg = 3328W
and ∆avg = 3072W , the breakdown point is achieved at
lower cost of ρmal = 0.42, and breakeven duration is also
significantly smaller. The problem for the adversary is the
very high margin and fraction of compromised meters, which
makes it easily detectable and cost inefficient. This obser-
vation shows that although our defense model has break-
down points, most of these correspond to strategies which
are hardly convenient for the adversary.

Table 4: Breakdown and Breakeven analysis
∆avg ρmal TC RR TBE

256 0.5 9000 398.13 22
512 0.69 12500 1105.9 11
768 0.80 14500 1924.3 7.53
1024 0.86 15500 2742.6 5.6
1280 0.72 13000 2875.3 4.52
1536 0.61 11000 2919.6 3.76
1792 0.58 10500 3251.4 3.22
2048 0.53 9500 3361.9 2.82
2304 0.50 9000 3583.1 2.5
2560 0.47 8500 3760.1 2.26
2816 0.44 8000 3892.8 2.05
3072 0.42 7500 3981.6 1.88
3328 0.42 7500 4313.0 1.73

7. CONCLUSION
In this paper we presented a taxonomy of various data fal-

sification strategies in AMI micro-grids, as may be devised
by powerful and organized adversaries such as rival nation
states, business competitors, etc. rather than individual self-
ish customers only. We proposed statistical anomaly detec-
tion and forensics technique to identify presence of various
attacks and a trust model based on Kullback-Leibler diver-
gence to identify the compromised smart meters. Our analy-
sis on real data sets shows that both the margin of false data
and the fraction of compromised nodes play a key role in un-
derstanding the limits of a distributed detection scheme. We
also studied some strategies that could be employed by at-
tackers to escape detection and the cost benefit analysis of
such strategies.
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APPENDIX

A. TESTING SETS: LOWERFRACTIONOF

COMPROMISED NODES
Figs. 16(a) and 16(b) prove that our approach works for

testing sets with ρmal values that very different from the
training sets.
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Figure 16: Testing Set for Additive: (a) ρmal = 20%
(b) ρmal = 30%

B. POWER CONSUMPTION DATA: DIFF-

ERENT REGION
To prove that the nature of power consumption studied is

generic, we show in Figs. 17(a) and 17(b) that the nature of
power consumption is also similar for a different AMI data
set as used in [3].
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Figure 17: Power Consumption Behavior: Different
Data Set


