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Abstract—A major limitation of mobile Crowd Sourcing (CS)
applications is the generation of false (or spam) contributions due
to selfish and malicious behaviors of users, or wrong perception of
an event. Such false contributions induce loss of revenue through
disbursement of undue incentives and also negatively affects the
application’s operational reliability. In this work, we propose a
reputation model, called QnQ, to segregate different user classes
such as honest, selfish, or malicious based on their reputation
scores. The resultant score is then used as an indicator to decide an
incentive for a user. Unlike existing works, QnQ ensures fairness
to different user behaviors by unifying ‘quantity’ (degree of partic-
ipation) and ‘quality’ (accuracy of contribution). Specifically, QnQ
utilizes evidences from a rating feedback mechanism to propose
an event-specific expected truthfulness metric by considering
total feedback volume, probability mass for positive evidence,
and the discounted probability mass of uncertain evidence. To
classify an event as true or not, a generalized linear model is
used to transform its truthfulness into quality of information
(QoI). Finally, the QoIs of various events in which a user
participates, are aggregated to compute a user’s reputation score.
For evaluation of QnQ through experimental study, we consider
a vehicular crowdsourcing application. QoI performance of our
model is compared with Jøsang’s belief model, while reputation
and incentive leakage is compared with Dempster-Shafer based
reputation model. Experimental results demonstrate that QnQ
is able to better capture subtle differences in user behaviors
by unifying both quality and quantity, and significantly reduces
undue incentives in presence of rogue contributions.

Index Terms—Participatory sensing, Trust, Reputation, Secure
Crowd sourcing, Security Economics, Vehicular Crowd Sensing,

I. INTRODUCTION

Sophistication in mobile devices (e.g., smartphones, tablets)
and their widespread adoption have given rise to a novel inter-
active sensing paradigm, known as Participatory Sensing (PS)
or Crowd Sourcing (CS) [5]. In CS systems, a crowd of citizens
voluntarily submit certain observations termed as contributions
(viz., report, image, audio) about their environment to a CS
application server, which thereafter fuses such contributions to
conclude a summarized statistic (or information) and publishes
it to support improved decision making.

An important category of CS applications is vehicular traffic
management and monitoring [3]. In such applications, a user’s
contributions are equivalent to ‘reports’ about various road
conditions that they might have observed. Based on certain
correlations among such reports, the CS application decides
whether a certain traffic ‘event’ has occurred, and publishes

this ‘information’ as a broadcast notification on the smartphone
application. Such information improves driving experiences
through dynamic route planning and re-routing of traffic in
busy cities. Two notable examples of real vehicular CS ap-
plications include Google’s Waze and Nericell [15]. Other
practical examples of CS applications are FourSquare, and Yelp
which help users to find best destinations in their geographical
proximity for food, entertainment, and other attractions or
events of interest. The real benefit of CS applications is that
fine grained and precise sensory observations can be obtained
quickly without depending on the deployment of expensive and
dedicated infrastructures [17]. However, the major drawback
is its “open” nature (accessible to all) which may expose such
applications to false contributions [9] [21].

Most of the CS applications need to use various incen-
tive mechanisms to motivate the users to keep contributing
regularly, and thus preserve their viability [13]. It has been
noted that in most of these mechanisms, the deciding factor of
incentive is the user’s degree of participation (i.e. “quantity” or
how much they contribute). However, selfish users may take
advantage of this loophole and intermittently generate false
contributions to boost their participation for gaining undue
incentives [17], incurring revenue losses to the CS system.
Furthermore, there could be malicious users who attempt to
cripple the CS applications by generating a large number of
bogus contributions in collusion [21]. Recently, such colluding
attack was launched against Waze in Israel, by which fake traf-
fic jam reports were created to orchestrate traffic re-routing and
unnecessary roadblocks [19]. Occasionally, false contributions
may also be generated owing to wrong perception. Regardless
of the motive, false contributions incur loss of revenue due
to unnecessary disbursement of incentives and also tarnishes
operational reliability of the CS application.

In our preliminary work, we studied a real data set from
Waze [3], and established that the ‘quantity’ rather than ‘qual-
ity’ of contributions decides incentives (details presented in
Section II-B). We argue that besides the quantity, there is also
a simultaneous need for assessing quality of information (QoI)
generated from user contributions. This QoI is essentially a
measure of the trustworthiness of the summary statistic and is
equivalent to its trust score. Additionally, user reputation based
on his level of truthful cooperation is required to determine:978-1-5386-0683-4/17/$31.00 c©2017 IEEE



(i) if a user is selfish or malicious, (ii) the incentive received
by the user, and (iii) acceptance of future reports from him.

A. Motivation

Apart from expensive ground truth based monitoring (or
truth discovery), an easier way to assess QoI is to allow
other users in the proximity to provide a feedback rating
(viz., positive, negative, uncertain) for each published informa-
tion [11] [17]. Based on such feedbacks, QoI and reputation
are quantified. Now, let us synthesize some of the limitations
of existing QoI and reputation models which are usually based
on Beta and Dirichlet distributions (such as Jøsang’s belief
model [11], Dempster-Shafer reputation [22]), or their variants
(refer to Section II for further details):

First, existing works only utilize the proportion of positive
feedbacks in the QoI measure. However, we show that accurate
QoI scoring should also include the effect of total number of
feedbacks (i.e., feedback mass) that a published information
has received. This step is important to weaken the success
rates of malicious ratings. Second, unlike most existing works
we consider a dynamic discounting of uncertain feedbacks
to ensure that the QoI measure is null invariant (i.e., not
influenced by high uncertainty or inconclusive feedbacks).
Third, our model is able to propose a reputation score for each
user that unifies both his degree of participation (quantity) as
well the quality of each contribution. Such a reputation score
provides dual benefits: (i) it segregates different types of users,
viz., honest, selfish, and malicious, and (ii) it forms a basis to
judiciously incentivize or penalize based on varying behaviors.
Finally, our design principle is free from the cold start problem
and learns from the evidences, rather than from history.
B. Contributions of the Paper

This paper proposes a novel model, called QnQ, for trust
and reputation scoring in a CS system in presence of malicious
and selfish users. First, based on the feedbacks received over
a particular published information (or event), we calculate
the Bayesian inference based belief, disbelief, and uncertainty
masses. Thereafter, we model the expected truthfulness of
the published event as a regression score using generalized
Richard’s equation and Kohlsrausch relaxation function as the
weights to the belief and uncertainty masses, respectively. This
step weakens the effect of malicious and incorrect feedbacks
while being null invariant. Subsequently, we map the expected
truthfulness to a QoI measure using the logit link function that
quantifies the possibility of the event’s occurrence.

Next, we keep track of the QoI measures of all the published
events for which a given user had contributed (through reports),
and then calculate a raw user reputation score by aggregating
them. Eventually, we compute a normalized user reputation
score by normalizing the aggregated score (within the interval
[-1, +1]) through a logistic distribution function. This nor-
malized user reputation score is utilized for classification and
judicial disbursement of incentives based on both quality and
quantity of his contribution.

Finally, we conduct extensive performance evaluation of the
proposed QnQ model using a vehicular crowdsourcing system
as a proof-of-concept. We demonstrate that QnQ outperforms
Jøsang’s belief and Dempster-Shafer (D-S) based reputation
models in terms of classification and incentives. Experimental
results show that QnQ is able to give a reputation score, that
rewards both quality and quantity and reduces undue incentives
in presence of dishonest users while ensuring fairness.

II. LIMITATIONS OF EXISTING WORK

This section reviews the state-of-the-art for QoI and user
reputation scoring models, followed by discussion on certain
important limitations of existing literature for CS scenarios
under selfish and malicious users.

A. Quality of Information (QoI)

Research in QoI is broadly classified under: (i) improvement
of quality and (ii) estimation of quality. Improving QoI is
achieved either through incentive mechanisms [23] or selection
of appropriate sensing agents [6]. The incentive mechanisms in
CS motivate users to continue furnishing contributions (reports)
in lieu of monetary or non-monetary rewards (viz., enter-
tainment, educational opportunities). In contrast, estimation of
quality aims at assessing the ‘veracity’ of the information, once
it is received from the users [20]. The veracity assessment
may be either on the individual reports or on the inferred
information statistic. Broadly, the QoI is assessed by modeling
evidence obtained from ground truth or feedback mechanisms.

Ground truth monitoring [10] compares user contributions
with a ground truth generated by a mobile trusted agent or a
watchdog physical infrastructure. If the contribution matches
with the agent or the watchdog’s input, it is considered good
else bad. Beta distribution [12] is often used to model such
binary evidences into a QoI score. However, availability of
ground truth is not immediate, often not guaranteed, and some-
times not feasible. Additionally, acquiring ground truth often
requires deployment of dedicated, specialized infrastructure, or
agents undermining the real benefits of crowdsourcing.

Some real CS applications, viz., FourSquare, Waze, Yelp,
use a rating feedback mechanism, whereby other consumers of
the service provide positive, negative or neutral ratings on the
published information. The estimation of QoI is achieved based
on the feedbacks received. In most cases, estimation of QoI is
achieved using Jøsang’s belief models [11] that computes the
QoI based on the ratio of positive feedback to the total feedback
with some fixed weight to the ratio of uncertain feedbacks. The
benefits of using a feedback rating paradigm is that it is easy,
fast, less expensive and really exudes the essence of a true
mobile crowd sourcing and participatory sensing paradigm.
Nevertheless, we observe the following inherent weaknesses
in Beta reputation and Jøsang’s belief models:
Confidence of the Feedback Community: Jøsang’s belief
model for expected Bayesian belief (EJ ) is given as:
EJ = b + a.u, where b = r+1

r+s+t+3 ; d = s+1
r+s+t+3 ;



Table I: Limitations of Jøsang’s Belief Model

Issues Examples Jøsang’s QoI Comment
Confidence of Rating Community E1:〈7, 3, 2, 2〉 0.55 Negligble difference in QoI. Does not

E2:〈70, 30, 20, 20〉 0.57 account for feedback mass
Not Null Invariant E3:〈105, 5, 0, 100〉 0.51 QoI is quite high in E3

E4:〈25, 5, 0, 20〉 0.53 even as most ratings are “undecided”

u = t+1
r+s+t+3 ; and r, s, and t denote the number of positive,

negative, and uncertain ratings. a = 0.5 is the relative
atomicity which is equal to the reciprocal of the cardinality of
inference state space {true, false} [11]. However, this model
fails to capture the confidence of the feedback community,
which makes the resultant expected belief (QoI in our
case) more vulnerable to manipulation by malicious raters
who provide positive ratings (respectively negative) to false
(respectively true) contributions. This may influence the QoI
score in favor of the adversaries, as shown in Table I, where
each event is denoted as E : 〈N, r, s, t〉, such that, N is the
total number of received ratings.

For event E1, 3 out of 7 total feedbacks are good, whereas
E2 has 30 such feedbacks out of 70. Jøsang’s belief model
measures almost the same QoI for both examples. From an ad-
versary’s perspective, it is easy to compromise/manage 3 good
raters in E1 and maintain the same fraction of positive ratings
as E2. However, it is harder to maintain the same fraction
when the crowd is large (as in E2), and the adversary has to
manipulate 30 raters. Hence, given the same fraction of positive
feedbacks, any event with more feedbacks should be considered
as more trustworthy. If this feature is not incorporated, QoI
becomes more vulnerable to feedback manipulation attacks,
viz. ballot stuffing (See Sec. III-B).
Not Null Invariant to Uncertainty: Jøsang’s belief models do
not offer null invariance property. By this problem, QoI of an
event can also be increased due to high proportion of undecided
feedbacks, which may be either intentionally generated, or be a
result of legitimate uncertainty. Either way such events should
not unduly increase the trust (QoI) score.

For Example, event E3 in Table I has 105 feedbacks, out of
which 100 are uncertain; however it achieves almost the same
QoI as E4 which in contrast has only 20 uncertain ratings. For
most conservative services, it may be risky or unwise to give
as high a QoI score to E3 as to E4. Thus, the QoI measure
needs a mathematical provision for controlling the impact of
high uncertainty on the QoI.

B. User Reputation Scores

Traditionally, reputation scoring models in crowd sourcing
use either Beta or Dirichlet distributions as theoretical basis
for probabilistic trust modeling [16]. Jøsang’s belief and D-
S based models are the state-of-the-art approaches that ex-
ploit either of these distributions to model evidences into
trust or reputation scores. Recent works [9], [2] [16], use a
Gompertz function based deterministic time-based reputation
management, rather than evidence based scoring. Moreover,
they assume that a prior accurate reputation exists, cannot unify
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Figure 1: Study on Waze Study

quality and quantity of participation, has no provision to handle
uncertainty, and cannot thwart the effect of rogue ratings. Most
of the recent works do not consider active dishonest reports
or ratings and do not consider economic incentives attached
with the reputation dynamics. In summary, the state-of-the-
art works still depend on either Beta or Dirichlet distribution-
based Jøsang belief and D-S based-reputation models [22] as
the core evidential reputation scoring component. Hence, this
work seeks to compare our results with these models. Some
limitations of these models identified by us are as follows:
Sacrificing Participation for Quality: D-S model [22] does
not simultaneously capture degree of participation and quality
into the reputation score. This limitation of D-S model is
depicted in Table II. Although users 1 and 2 have the same
reputation, the latter has much higher number of contributions.
Even with 52 additional good contributions, user 2 ends up
with a score almost similar to User 1. This is grossly unfair as
it undermines the higher participation of users. If the maximum
reputation is attainable with lower contributions, users may not
be motivated enough to participate more, and CS application
will underachieve its possible potential.

Table II: Sacrificing Participation for Quality
User Participation Good Bad Dempster Score

1 9 9 0 0.99
2 61 61 0 1.00
3 20 18 2 0.99

Sacrificing Quality for Participation: In [3], we studied a real
data set from Waze and identified that quality may be sacrificed
for participation. Fig. 1b shows that the majority of the users
have generated around three reports over the span of one week.
However, there are a few users who have generated a very
high number of reports (around 600 to 1000). Additionally, it
is evident from Fig. 1a that the incentive of the users gradually
increases with higher participation rate. Conversely, the ratings
assigned to the users with high participation are very low and
even drops to zero while maximum incentive is received. Thus,
the reputation score of a user needs to unify both degree and
quality of participation.



III. SYSTEM AND THREAT MODELS

In this section, we present the system and threat models.

A. System Model and Design

As depicted in Fig. 2, our system model captures a particular
city area which may consist of U users, all equipped with smart
mobile devices and subscribed to a vehicular CS application.

Figure 2: System Model
Two important components of this system are:

Report: A report is an alert furnished by an user after he per-
ceives an incident (viz., accident, jam, road closure). However,
due to the presence of selfish and malicious users, there may
be reports generated for incidents that have never occurred.
Event: An event Ek, k ∈ {1, · · · ,K} is a summarized informa-
tion which is published on a live map after the CS application
receives a certain number of similar reports, where K is the
total number of events observed over the system lifetime. If
reports from two different users indicate similarity in terms
of location, time epoch, and incident type, they indicate the
‘same’ event.

In our model, there exists two types of users:
Reporter: A reporter is a user who has propensity to generate
reports and has reported at least one incident. Any such
user is liable to have a reputation score which reflects the
overall quality of reports contributed as well as the degree of
participation. Incentives are decided based on this score. To
remove bias from his feedbacks, a reporter is not allowed to
rate a published event for which he had generated a report.
Rater: A rater is a user who provides feedback on his perceived
usefulness of an event through one of these categories: Useful
(α), Not Useful (β), and Not Sure (γ) (e.g. in Foursquare).

For a published event, a rater is allowed to submit only one
rating. In our system model, we view the act of providing
ratings as an obligation, and it is not rewarded. Hence, for
majority of the normal users, there is no selfish incentive to
provide false ratings. However, false ratings could be motivated
by malicious intents. Collecting as many feedbacks as possible
is important in absence of the ground truth. This may be
achieved by auto-activation of a pop-up rating query during
an active rater’s navigation through the adjacent region of the
event, provided that he has not reported for the event under
scrutiny. The rating query asks rater to click one of three
possible options: Useful, Not useful, and Not sure, to gather
a subjective judgment about the published event. Our model

can be easily extended to 5-star rating systems, by visualizing
(4, 5), (1, 2) and (3) as ‘useful’, ’not useful’ and ’not sure’.

B. Threat Model and Assumptions

Among the dishonest reporters, there are selfish and mali-
cious ones. A selfish user is a legitimate user who generates
true and false reports intermittently, with certain probabilities
for maximizing his incentives. Such selfish user acts alone or at
best collude in a small scale. Malicious users are either actual
user devices compromised and controlled by an adversary or
are hardware emulators that masquerade themselves as real
devices to the CS system. A proportion of the compromised
devices can be made to act in collusion as reporters while the
remaining as raters. Malicious raters act in the following ways:
Ballot stuffing: A rater submits positive feedbacks to an incor-
rect (false) published event generated by dishonest reporters.
Bad mouthing: A rater submits negative feedbacks to a legiti-
mate published event generated by honest reporters.

Note that, hardware emulators can further generate numerous
sybil interfaces to magnify the problem of false reports and
ratings. However, such sybil entities could be identified by
existing methods [21]. Hence, we assume that it is only the
hardware emulators or compromised devices which pose a real
threat of colluding attacks. In general, the adversary has a
constrained attack budget by which it can compromise/deploy
only a limited number of devices/emulators that act as either
reporters and raters. This is evident from [21], where authors
generated 1000+ sybil (virtual) interfaces to collude a Waze-
like application, but were compelled to deploy only 10 emula-
tors (physical systems) due to budgetary constraint. However,
in most cases, with larger rater populations, the rating mech-
anism becomes less likely to get sabotaged. For any rating-
based system, the number of raters is always higher compared
to the number of reporters generating reports/reviews, which
is evident from the Epinions dataset [14]. It shows that the
number of feedbacks is roughly three to four times the number
of reviews (reports) for any item.

The adversary uses this constrained attack budget to manipu-
late a fraction δmal of the reporters and raters to generate false
reports and ratings. It will be a significant fraction for scenarios
with limited number of legitimate users. However, in presence
of a significant crowd of independent users, δmal will be low,
and it will not be possible to sabotage the entire proportion
of genuine feedbacks. Since Crowd Sensing applications are
meant for urban spaces, we assume that for majority of times,
substantial number of authentic raters are likely to be present
in the vicinity of an event, thus reducing the proportion of false
ratings to the total feedbacks.

IV. QNQ: PROPOSED REPUTATION SCORING MODEL

Now we present the modules of the proposed reputation
scoring model, called QnQ.



A. Posteriori Probability Masses

The first step is to derive the expressions for the posteriori
probability masses associated with feedbacks: Useful, Not Use-
ful, and Not Sure. The probability masses are estimated for each
event Ek based on the available evidence (i.e., supporting each
rating type), using a classical Bayesian approach For simplicity,
we drop Ek from all the notations. Let ω̄ = {ωα, ωβ , ωγ} be
the three tuple probability parameter to be estimated. Here,
ωα, ωβ , ωγ are the unknown probabilities of observing a Use-
ful, Not Useful, or Not Sure feedback, respectively. We denoted
H(ω̄) as the hypothesis, such that it has three possibilities of
either taking α , β or γ. Formally, P (H(ω̄) = α|ω̄) = ωα,
P (H(ω̄) = β|ω̄) = ωβ , P (H(ω̄) = γ|ω̄) = ωγ . Let Fα,
Fβ , and Fγ be the random variables denoting the number of
feedbacks ηα, ηβ , and ηγ , received for each feedback category,
respectively, such that N = ηα+ηβ+ηγ . The evidence vector,
denoted as F (N) = {Fα, Fβ , Fγ}, should be modeled as a
multi-nomial distribution given by:

P (F (N)|ω̄) =
N !

ηα!ηβ !ηγ !
ωηαα ω

ηβ
β ωηγγ (1)

The posteriori hypothesis of positive outcome based on the
evidence vector and assumed prior is given as:

P (H(ω̄) = α|F (N)) =
P (H(ω̄) = α, F (N))

P (F (N))
(2)

Similarly, the posteriori hypothesis of negative and uncertain
outcomes can be represented by replacing α with β and γ
respectively in Eqn. (2).

Solving the above (see [4]), belief, disbelief, and uncer-
tainty probability masses are derived as follows: P (H(ω̄) =
α|F (N)) = ηα+1

N+3 = b, P (H(ω̄) = β|F (N)) =
ηβ+1
N+3 = d,

and P (H(ω̄) = γ|F (N)) =
ηγ+1
N+3 = u, respectively. These are

the posteriori probability masses for Useful, Not Useful, and
Not Sure feedbacks as perceived by the raters, respectively.
Note that, when ηα = ηβ = ηγ = 0, all the possibilities are
equiprobable under no information (non-informative prior).

B. Expected Truthfulness of an Event

Contemporary research regards trust as a way of choice
under uncertainty and risk [8]. Hence, it is natural that trustwor-
thiness of an event should account for uncertain evidences apart
from the positive evidences [11]. Thus, we propose wb and wu
as the coefficients (or weights) of belief and uncertainty masses
respectively, where weights control the extent to which positive
and uncertain probability masses contribute to the truthfulness
score. The problem is modeled similar to a weighted regression
approach where probability masses are explanatory variables
and the expected truthfulness is a response variable. We apply
Richard’s generalized curve and Kohlrausch relaxation func-
tions to model wb and wu. The expected truthfulness for any
published event Ek (denoted as k for ease of representation)
will be given as:

τk = (wb).b+ (wu).u (3)

where, 0 < {wb, wu} < 1. Hence, 0 < τk < 1.
1) Design of Belief Coefficient (wb): We mentioned that

expected truthfulness should also consider the volume of the
feedbacks, i.e., how many feedbacks have been received for an
event apart from the belief mass b. Intuitively, lesser N (total
number of feedbacks/ratings) should have low wb, which in
turn, contributes to a lesser expected truthfulness. However, wb
should gradually increase with N . Thus, to model this nature
of wb, we use a Generalized Richard’s Equation normalized
between 0 and 1 as:

wb =
1

(1 +Abe−BbN )1/ν
(4)

where Ab > 0, Ab 6= ∞ is the initial value of the coefficient,
and Bb is the rate of growth, ν 6= 0 is the parameter controlling
the point where the curve enters into exponential growth.

The nature of wb is given by the sigmoid function (refer to
Fig. 3a). More conservative (or high risk applications) systems
will have less Ab and Bb to control rapid growth of wb. This
provision enables the CS administrator to nullify the effects
of ballot stuffing. QoI based on only belief masses usually get
influenced in the favor of the adversaries, if there are limited
number raters in the system. Thus, under fewer number of
feedbacks, wb will be low, and it will progressively increase
(in an exponential manner) if more feedbacks are available,
eventually saturating after sufficient number of ratings are
received. Presence of larger crowd of independent raters makes
it impossible to sabotage the significant proportions of positive
feedback in the adversary’s favor.
Physical Significance of Choosing Richard’s Curve: Using
Richard’s generalized curve as wb is motivated from deductive
reasoning and developmental learning studies in cognitive
psychology. Intelligent humans are subconsciously rational
enough to know that possibility of a bias negatively affecting
a belief inference is more, if less number of people say
the same thing, as opposed to the same thing endorsed by
more number of people. Hence, an inference backed by more
people/feedbacks is more trusted than the same inference
backed by less people. The increasing confidence of belief
with higher support can be modeled through incremental
change processes [8], [18]. Mathematically modeling such
incremental change processes is essential for most studies in
belief learning problems and is done by exponential growth
functions [18]. These models are characterized by a slower
initial phase followed by an inflection point where the learning
rate exponentially peaks in the face of increasing evidences
and finally saturates into a stationary phase where the learning
rate approaches an upper asymptote. Since, we want to award
the confidence of the rating community to the belief mass, we
model weight wb through Richard’s generalized curve from
the family of exponential growth models. The advantage of
Richard’s curve over unlike existing models is that, it provides
mathematical provisions to control point of inflection ν, rate
of change to maximum value after the inflection Bb, and
controlling the initial lower asymptote Ab.
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Choice of Ab, Bb and ν: The initial asymptote is the base
value of the weight given to belief mass when no rating
is received. If the system is not restrictive, then a higher
initial weight wb is required, and hence a lower value of Ab
is recommended. In contrast, for a conservative system, the
initial weight of wb should be very low, to ensure that it
should acquire a sufficient number of ratings before attaining
a substantial weight.

Fig. 4a shows the effect of Bb that controls the number of
ratings N required to attain the maximum possible value of
wb once it enters the exponential phase. For example, if the
concerned area is inherently crowded and higher N is expected,
then Bb should be kept low such that full weight to wb is
awarded only after a sufficient number of ratings are received.
If the system is less restrictive, it can lower the value of Bb.

The ν controls the value of N at which the curve first
enters into the exponential growth phase. A lower value of
ν is preferred if a CS administrator expects receipt of false
ratings, or if the location historically receives lower number of
ratings. Fig. 4b shows the different values of ν.

2) Design of the Uncertainty Coefficient (wu): In Eqn. (3),
wu controls the contribution of uncertainty mass to the effective
truthfulness. Intuitively, uncertainty is high if an incident has
just occurred, and the majority of users are uninformed. How-
ever, it gets reduced as more feedbacks are received. Thus, for
smaller values of N , we should have an increasing function for
wu and as this is also similar to growth curve, we model by a
Richard’s function bounded at wmaxu . However, once N attains
a threshold value, say N = Nthres, the coefficient should start
to decrease. The value of Nthres and wmaxu depends on the
empirical data of relevant application scenario and risk attitude.

Kohlsrausch relaxation function [1] is used to model prop-
erty of a system that evolves towards equilibrium after sudden
perturbation or a trigger. After trigger point N = Nthres, we
use this function to model the discounting effect of uncertain
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Figure 5: Impact of Parameter Choices on wu

ratings on trustworthiness thus ensuring null invariance. Its
parameter 0 < φ < 1 controls the rate of discounting of wu
over N . The larger the value of φ, the quicker is the decrease
(refer to Fig. 5a). The following equation gives the variation
of wu with respect to the number of received feedbacks:

wu =


wmaxu

(1+Aue−BuN )1/ν
, if N < Nthres

e−(N−Nthres)
φ

, if N ≥ Nthres
(5)

where Au and Bu are respectively the corresponding asymptote
and growth parameters (as discussed in Eqn. (4)). 0 < wmaxu <
1 is a fixed parameter controlling maximum allowable benefit
of doubt for an event. Choice of wmaxu may be guided by risk
attitude or availability of trusted agents [17].
Physical Significance of Choosing Kohlrausch Function:
Earlier we mentioned that the interpretation of uncertainty
in the feedbacks is different from that of evidence without
uncertainty. Especially for decisions that are objective, people
tend to give a benefit of doubt while trusting something
if uncertainty is reported from a small number of people.
But if there is high uncertainty even as more people have
participated, the effect of this uncertainty does not contribute to
the increase of trust, since the risk perception is magnified [8].
The uncertainty involves a trigger point or a knot point,
about which there is a relatively brisk reorientation of the
existing state of benefit of doubt into a qualitatively different
state of discounting the benefit of doubt. Such phenomena
in belief learning and developmental theory is known as
transformational change processes [18]. They fit into a family
of spline curves and such phase transitions are modeled by
multiple equations around the knot point [7]. The nature of
wu mimics such effects on the interpretation of uncertainty.
Choice of φ, Nthres and wmaxu : Kohlrausch factor φ deter-
mines how quickly wu’s discounting effect reaches its min-
imum after Nthres is reached. Fig. 5a shows the effect of
various choices of φ. A CS administrator chooses a higher
value of φ if proportion of uncertainty needs to be immediately
discounted or vice-versa. Effects of Au and Bu to wu are
similar to that of Ab and Bb to wb.

A small Nthres would prevent wu to reach its maximum
value, before the uncertainty discounting starts. This is true
for more conservative systems and is evident from Fig. 5b. A
low wmaxu may be required when administrator comes to know
about the ground truth (from other sources such as mobile



trusted participants [17]), and does not want uncertainty mass
to obtain higher weights.

C. QoI of Published Event

τk is the expectation that the published event Ek has actually
happened. Now, the system needs to perform a regression to
determine the odds of Ek being true or false which we model as
the QoI. We have used the generalized linear models (GLM) for
this purpose. When response/predictor variables is categorical
(true/false, yes/no, etc.) with non-normal error distribution, we
need a link function to provide the relationship between the
predictor variable (linear) and the mean of the distribution
(explanatory) defining the QoI. Thus, if Qk is the response
and τk is the mean, the link between them is established by
the following logit function:

Qk = ln

(
τk

1− τk

)
(6)

Qk is the QoI of the event Ek which has value in the interval
[−∞,+∞]. The logit function gives monotonically decreasing
weights to all τk < 0.5, and monotonically increasing weights
for τk > 0.5. Finally Qk = 0, if τk = 0.5.

We compare QoI score generated by QnQ with Jøsang’s
expected truthfulness (EJ ), which is equivalent to τk in our
approach (because the scale of both metrics have to be between
0 and 1 for fair comparison). From the earlier Table. I, E1,
E2,E3,E4 end up with 0.04, 0.46 and 0.16 and 0.26. This solves
the limitations/bias of Jøsang Scores.

D. QoI-based User Reputation Score

For any reporter i, we match the reports he had generated
with the estimated QoI value of the corresponding events. We
add Qk for every unique reported event by a reporter i, to
calculate the aggregate reputation score Si.

Si =

K∑
k=1

QkI(k, i) (7)

where, I(k, i) =

{
1, If i reported event k
0, Otherwise (8)

E. Normalized User Reputation Score

The aggregated reputation score Si obtained from Eqn. (7)
is a real number in the interval [−∞,+∞]. In order to make
it intuitive and consistent with the definition of trust metrics,
we use the logistic distribution function to map its values in
the interval [-1, +1]. Therefore, the final reputation score (Ri)
of a reporter i is given as:

Ri =



+

(
1

1+e
−Si−µ

+
s

C+

)
, if Si > 0

−

(
1

1+e
− |Si|−|µ

−
s |

C−

)
, if Si < 0

0, if Si = 0

(9)

where, µ+
s and µ−s are the mean reputation score for re-

porters with positive and negative Si respectively. Similarly,
C+ =

√
3σs+
π and C− =

√
3σs−
π where σs+ and σs− are the

standard deviations for reporters with positive and negative Si
respectively. Note if a user generates reports for the “same”
event multiple times, it is considered as one reported event.

V. PERFORMANCE STUDY

We present the simulation settings, comparisons with
Jøsang’s belief and D-S reputation model and show the ef-
ficiency of QnQ in terms of reputation scores, and incentives.

1) Simulation Settings: We developed a realistic environ-
ment of a vehicular participatory sensing system by choosing
the simulation parameters from a Waze data set [3]. We
simulate a city area of 200 × 200 sq.units as the region of
interest. Out of U = 2400 number of active users, Urp = 800
are reporters and Urt = 1600 are raters. The city area is
equally partitioned into four sub-regions; each initialized with
Urp
4 reporters and Urt

4 raters at the start time. We consider a
fixed attack budget of compromising 520 fake/rogue devices,
out of which 120 are used for generating false reports and 400
are used for false ratings. These devices have been distributed
uniformly in the simulated city area. The total simulation time
is uniformly divided into D = 240 number of epochs, and each
epoch is of a duration of T = 30 minutes. Each epoch has
a predefined probability of occurrence of both true and false
events. Every event has a event radius (50 sq. units) within
which all reporters and raters are liable to report or rate. Each
event has a tunable lifetime within which reports and feedbacks
are accepted. For e.g., if an event Ei has occurred in epoch i
and the duration of its lifetime is two epochs, then Ei can be
reported and rated until epoch i+ 2.

We have considered random paths along which a user moves
with an average speed of 5 units/epoch. We have refrained from
using any particular mobility traces since variations in mobility
patterns can bias the number of raters and reporters and hence
the results. Rather, our simulation is done by parameterizing
the number of raters and ratings to account for all possible
realistic combinations.

For the reporters, we emulate honest, selfish, and malicious
behaviors in the following ways. 20% of the reporters are
programmed as selfish while 10% act as malicious and the
rest act honestly. Given that an incident has occurred, an
honest reporter reports 99% of the time and has a minus-
cule probability of false report (simulating occasional wrong
perception). Malicious reporters within a randomly generated
location (chosen for false event) collude to generate fake
reports of a fictitious incident with high probability ≈ 100%.
Finally, selfish reporters intermittently report both true and
false events. One class of selfish users reports more true events
(about 60%) than false events, while the other class reports
lesser true events (about 40%) than false events.

For the raters, we simulate both honest and compromised
(malicious) raters. The compromised raters give positive ratings
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Figure 6: QoI Score Comparison

to false events and negative ratings to true events, while honest
raters provide genuine ratings with 5% uncertain legitimately.
The user ID that reported a particular event is prevented from
rating it for obvious reasons. The percentages of compromised
raters corresponding to an event varies with the variation
in the population size. Since 400 out of 1600 raters are
compromised), on average the fake rating percentage for true
and false events is about 25%. We have discussed the effect
of this in our scalability analysis (see Section V-6). Unless
otherwise stated, the values of different parameters considered
for experiments are: Ab = Au = 20, Bb = Bu = 0.08,
φ = 0.2, wmaxu = 0.5, Nthres = 40.

2) QoI of Events: Fig. 6a shows a comparison between the
QoI score achieved by QnQ vs. Jøsang’s belief model for
a false event. We observe that QnQ refrains from giving
an undue high QoI score, unlike Jøsang’s model for lower
number of ratings. As higher number of ratings are received,
the confidence of the crowd and the uncertainty discounting
is taken into account to converge to the true value. Hence,
malicious raters are unable to harness an advantage. This is
however not true for Jøsang’s model, and false events may end
up getting higher scores if number of ratings were lesser. In
contrast, Fig. 6b shows QoI score comparison for a true event.
For QnQ, QoI converges to the true value only after sufficient
amount of ratings are received, while for Jøsang’s model this
aspect does not matter. This is essential to prevent potential
sabotaging by an organized minority of rogue raters. QnQ
will always assign low QoI to events receiving low feedbacks.
When number of ratings are limited there could be two possible
options: (i) the published event may not be significant enough
and does not draw attention of majority of raters, resulting in
low QoI, and (ii) the place has an inherently low population
and so N is not very high. The parameters Ab, Au, Bb, Bu
and ν (explained in Section IV-B) could be tuned to achieve
higher QoI score at comparatively lower number of ratings to
adapt to contextual requirements.

3) User Reputation Scores: Quality and Quantity: Fig. 7
shows how QnQ is able to reflect both quantity (i.e., total
number of events participated) and quality (i.e., the number
of events found to be true) of participation in the resultant
user reputation score. The first observation is that three distinct
groups of users emerge. The lowest group corresponds to
malicious, the middle group to selfish and top group to honest
users. Another key observation is that selfish and malicious
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Figure 8: Classification of User Behavior

users cannot increase their reputation even with boosting up
their participation. This is a contrast to the Waze example
presented in Section II-B. Since selfish users intermittently
contribute true and false events, their scores are higher than
malicious but lesser than the honest users. The selfish group
has two tiers as explained below.

4) Classification of Users with Fairness: We considered 2
different types of selfish users : (i) reports more true events
than false events, and (ii) reports more false events than true
events. To be fair, the selfish users with higher number of
genuine contributions should have higher scores than others
from same class. This aspect can be verified from Fig. 8a and
Table III. Here ni is the total event participation of user i. Some
honest users with lower scores are at par with some selfish
users. These honest users have a very low event participation
(honest #2 in Table III). In contrast, selfish #1, contributed
about 25 good events along with 11 bad events. The system
awards him a score marginally above 0.38 due to his 25 good
events as opposed to 3 contributed by honest #2. However,
his net score increase is not substantial due to 11 bad events.
Both have much lower score than honest #1, which has one
inadvertent bad event and 57 good events. Our model is better
in accuracy and fairness than D-S based reputation score as
shown in Fig. 8b, where many selfish users end up with very
high scores.

Table III: Comparative Reputation Scores
Type ni True # False # Score

Honest #1 58 57 1 0.959792
Honest #2 3 3 0 0.316258

Malicious #1 57 3 54 -0.926592
Malicious #2 8 0 8 -0.409386

Selfish #1 36 25 11 0.380653
Selfish #2 39 17 22 -0.473364
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Figure 9: Incentive Disbursed: Securing Undue Leakage
5) Reducing Incentive Losses: We considered a reputation

score-based incentive mechanism presented in [17] and com-
pared the rewards disbursed. Fig. 9a shows that QnQ offers
a larger variation of incentives disbursed to honest users
according to the variations in quality and quantity. However,
D-S gives higher incentives since it only awards quality but not
quantity. Hence, users with lower participation also end up with
a high score and hence a higher incentive. In contrast, Fig. 9b
shows that mean QnQ-based incentives for selfish users is 50%
that of honest ones and is three times less than that yielded
by D-S based reputation model. Unlike D-S based model,
QnQ can distinguish between honest and selfish behaviors and
penalize the latter with low rewards thus preventing loss of
revenue due to false contributions.

6) Scalability and Robustness Limits: Unlike all prior plots
with population size of 2400, now we consider populations
of 1200 and 3600 (fake devices inclusive), under the same
attack budget of 520 devices. Fig. 10a show that even with low
population of 1200, such that malicious raters form about 47%
of the total raters, we still succeed to keep all of the malicious
and selfish users in lower reputation tier, but misclassification
rate of honest users increases. This is because the smaller
crowds are unable to generate required confidence since bad
mouthing causes many honest user’s events to be rated low.
Because our system follows a protective approach, this sacrifice
is made when crowd is low. However, when crowd increases,
reputation of all honest users are improved. This situation is
evident from Fig. 10b.
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Figure 10: Reputation Scalability

VI. CONCLUSION

In this work, we addressed the reputation scoring of users
(under malicious and selfish behaviors) in the premise of
crowd sourcing. We proposed a regression-based reputation
model, QnQ, which is resilient to rogue contributions and
null invariance and unifies quality and quantity of information
contributed. The resultant reputation score provides a clear

segregation among honest, selfish and malicious users, and
implicitly guarantees fairness within each segregated group
without sacrificing either participation or quality. In terms
of rewarding the users, QnQ performs better than the D-S
reputation-based incentive mechanism. Finally, recommenda-
tions on decision parameters help to adapt the model under
varying conditions of risk and uncertainty. As a part of the
future work, we intend to use this reputation score to solve
an optimization problem with two objectives: (i) maximize
truthful user participation, and (ii) minimize disbursement of
undue incentives.
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