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ABSTRACT

Compromised smart meters sending false power consumption data

in Advanced Metering Infrastructure (AMI) may have drastic con-

sequences on the smart grid’s operation. Most existing defense

models only deal with electricity theft from individual customers

(isolated attacks) using supervised classi�cation techniques that do

not o�er scalable or real time solutions. Furthermore, the cyber and

interconnected nature of AMIs can also be exploited by organized

adversaries who have the ability to orchestrate simultaneous data

falsi�cation attacks after compromising several meters, and also

have more complex goals than just electricity theft. In this paper,

we �rst propose a real time semi-supervised anomaly based con-

sensus correction technique that detects the presence and type of

smart meter data falsi�cation, and then performs a consensus cor-

rection accordingly. Subsequently, we propose a semi-supervised

consensus based trust scoring model, that is able to identify the

smart meters injecting false data. The main contribution of the

proposed approach is to provide a practical framework for com-

promised smart meter identi�cation that (i) is not supervised (ii)

enables quick identi�cation (iii) scales classi�cation error rates bet-

ter for larger sized AMIs; (iv) counters threats from both isolated

and orchestrated attacks; and (v) simultaneously works for a va-

riety of data falsi�cation types. Extensive experimental validation

using two real datasets from USA and Ireland, demonstrates the

ability of our proposed method to identify compromised meters in

near real time across di�erent datasets.
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1 INTRODUCTION

Advanced Metering Infrastructure (AMI) is one of the building

blocks of the smart grid technology, responsible for collecting data

on loads and consumer’s electricity consumption [16]. Such data

are usually collected by smartmeters installed on the customer site,

and are expected to play a pivotal role in current and future smart

grids. For example, AMI data will be at the basis of critical tasks

such as automated billing and pricing, demand response, forecast,

load adjustments [31], and management of daily and critical peak

shifts. Hence, the integrity of AMI data is of utmost importance.

However, data falsi�cation attacks target the integrity of AMI data.

In the literature, defense against the falsi�cation of electric-

ity consumption data, has been mostly focused on electricity

theft, [9, 13, 14, 23], where individual customers are the primary

adversaries, who report lower than actual usage for lesser electric-

ity bills. Since the actually measured reading of power consump-

tion is reduced, such an adversarial strategy is a deductive mode

of data falsi�cation. Such attacks from individual rogue customers

are usually uncoordinated and we term them as isolated attacks.

However, it is recognized that the cyber and interconnected

nature of AMIs can be exploited by more organized adversaries,

(e.g., organized criminals [30] and business rivals [10, 27]), who

are more equipped to bypass cryptographic defense, compromise

several smart meters, and alter a large or small amounts of data

simultaneously, thereby signi�cantly impacting the smart grid’s

operations [10, 13, 30]. We term such attacks as orchestrated at-

tacks. Orchestrated physical attacks tampering themeter hardware

to produce false data was reported in [29, 30]. Thus, cryptography

or network intrusion alone cannot protect against this threat.

The goals of organized adversaries may not be restricted tomon-

etary bene�ts on the customer billing side resulting from electric-

ity theft. As an example, higher than actual power consumption

can be reported by a meter as a byproduct of static and dynamic

load altering attack [17] or hardware tampering a�ecting both cus-

tomers and utilities. Such an attack is termed as an additive mode

of data falsi�cation. An additive attack launched by a utility on its

rival company’s meters, may induce loss of business con�dence by

the customers of the victim company, due to higher bills. The ex-

pected future use of AMI data for demand response, forecast and

load planning may induce additive attacks to bene�t customers by

https://doi.org/10.1145/3196494.3196551
https://doi.org/10.1145/3196494.3196551
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drawing undue incentives during demand response [1]. Note that,

an organized attacker may also perform a balancing additive and

deductive attacks to evade detection methods that use mean aggre-

gates, which are termed as camou�age mode of data falsi�cation.

Previous works on orchestrated or isolated attacks have many

disadvantages. Classi�cation based techniques use computation-

ally expensive Multi-Class Support Vector Machines (SVMs) [8, 9],

Neural Networks [7] and only focus on retrospective identi�ca-

tion (takes 6 months to 2 years), lacking the possibility of detect-

ing the attacks or compromised meters before serious damages.

Other works [1, 11] utilize a complete supervised approach by

maintaining continuous �ne grained meter speci�c historical evi-

dence which is impractical and error prone for large scale AMI net-

works, and requires separate training for particular attack types.

State based detector needs special hardware which is very costly

as elaborated in Section 2. Some consensus based approaches

use traditional measures of central tendency such as median and

mean [14, 22, 23] or their variants. Such consensus measures get

easily a�ected by larger margins of false data or larger fractions of

compromised meters (when using instantaneous consensus met-

rics). They also fail under camou�age attacks (typical in orches-

trated attacks), may lead to larger error rates (when using historical

consensus metrics), since the mean aggregate of power consump-

tion data readily changes (proved later by real datasets).

In this paper, we propose an anomaly based consensus correc-

tion scheme and a semi-supervised learning based trust scoring

model, that detects occurrence as well as the speci�c type of falsi-

�cation of power consumption data (referred to as attack context),

and then identify the compromisedmeters injecting such false data

in an AMI, regardless of isolated or orchestrated attacks. Speci�-

cally, we propose a novel metric based on harmonic to arithmetic

mean ratios of daily power consumption to detect anomalies and

infer the attack context. Based on the inferred attack context, we

calculate a resilient mixture mean and standard deviation as an ap-

proximate consensus measures that weaken the alterations caused

by the false data from orchestrated attacks. Subsequently, a set of

discrete rating levels is associated to each meter over time using

the proximity of its reported data to this resilient mixture mean.

Then, a Folded Gaussian distribution based weighing procedure is

used to assign weights to each of the discrete rating levels. Based

on rating levels and weights observed over a time window, a trust

value is calculated per meter that classi�es compromised meters.

We validated our model through extensive experiments on real

datasets acquired from two di�erent AMI infrastructures with

varying sizes and regions. Results show that our proposed method

is able to detect and decipher additive, deductive, and camou�age

attacks launched by organized adversaries in real time. We demon-

strate that our method is robust to a high fraction of compromised

meters (upto 75%), is able to identify compromised meters from

non-compromised ones over margins of false data, thus making it

scalable for large sized AMI. Additionally, our method identi�es

against isolated attacks from individual meters. We compare our

results with three existing works to show improvement.

2 LIMITATIONS OF RELATED WORK

Existing works on AMI data falsi�cation can be classi�ed into

Classi�cation based, State Estimation based, and Consensus based

methods. Classi�cation based approaches [7–9] require extensive

training phases andmulti-class SVMs for each customer separately,

in order to detect electricity thefts. They are computationally com-

plex and only allow retrospective identi�cation. A study compar-

ing classi�cation methods [7] concluded that the accuracy of most

of these models are only 60% to 70%, although they su�er from

privacy intrusion and complexity issues.

State based detection techniques [6, 12, 13] in contrast, require

additional monitoring hardware deployed at various points across

the AMI and distribution network for consistency checks. Addi-

tional hardware requirement is costly to the extent that it has been

recognized as a practical deterrent for utility providers to use such

solutions in scale. Some works monitor non-technical loss (NTL)

at the transformer meter. However, in [7] it is observed that NTL

could vary due to large number of factors other than attacks (e.g.,

legitimate changes due to unexpected weather) and hence su�ers

from high number of false alarms. Moreover, the NTL approach

cannot detect for camou�age or load altering induced attacks.

Consensus based methods [14, 22, 23] use smoothened moving

average of median or mean power consumption for detection, fol-

lowed by information theory to identify meters. Most works ex-

cept [14] assume isolated electricity theft from a small number of

malicious meters that does not greatly bias the consensus. But this

assumption on unbiased consensus may not hold for organized

adversaries with higher attack budgets launching orchestrated at-

tacks. Some works such as [22, 23], use historical mean/median

power consumption for comparison of bad behavior. However, the

mean power consumption varies readily due to contextual factors

such as weather, customer habits etc. as shown later from studies

with our real datasets. Some works [1, 11] use a supervised learn-

ing of historical proximity patterns of each meter with instanta-

neous consensus, but fails for higher fractions of compromised me-

ters (≥ 40%). Additionally, supervised approaches become cumber-

some for large scale grids due to large training sets and require

labels which may not be available or accurate. Another major lim-

itation these methods, is that the assumed margins of false data

per meter are usually �xed and are also typically very high (600W-

1500W), which favors easier detection. As shown later, the mean

consumption can easily get a�ected by both larger margins of

false data or legitimate consumption changes (e.g., suddenweather

changes), which increases errors. This is evident from [14, 22],

where �ne grained monitoring still yields accuracy of about 62%.

Note that cryptography based approaches are not enough since

physical attacks can also cause data falsi�cation [29, 30].

3 SYSTEM ARCHITECTURE AND DATASET
DESCRIPTION

We consider a set of N smart meters reporting power consump-

tion data to a data concentrator periodically. Let the i-th smart me-

ter report a datum P it at the end of time slot t . We model P it as

the realizations of a random variable (r.v.) P i denoting the power

consumption distribution of the i-th smart meter. A Neighborhood

Area Network (NaN), formed by a collection of houses is governed

by a NaN gateway node, that may act as data concentrators col-

lecting data from multiple smart meters in an area. Multiple NAN

gateways may be connected to form a Field Area Network (FAN),
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governed by a FAN gateway, which in turn is connected to the Util-

ity Wide Area Network (WAN).

Decentralized defense models are deployed at either NAN or

FAN gateways while centralized detection frameworks are de-

ployed at the WAN [3]. Since the datasets did not reveal the ac-

tual topology, we show results on smaller subsets of meters and as

a whole, to mimic both deployment possibilities and understand

performance scalability with varying micro-grid size N .

3.1 Dataset Description

To study the distribution of P i , we investigated hourly (i.e., t

slotted hourly) reported real power consumption datasets of 700

houses from Austin, Texas [25] and 5000 houses from Dublin,

Ireland [26] that belong to residential customers. We observed

that each P i follows an approximate lognormal distribution in the

Texas dataset. We also observed that all such log-normal distri-

butions are clustered close to each other such that the variance

between them is not arbitrarily large. The evidence is shown in

Fig. 1(a). Given this observation, we claim that the combination of

the individual lognormals can be well approximated by a mixture

distributionwhich is also log-normal (as evident from Fig. 1(b)).We

denote Pmix as the random variable with approximate lognormal

mixture distribution considering all houses in the grid. The trends

from Texas dataset, also matches with trends from the same exper-

iments over the Irish dataset with similar results on consumption

for a di�erent population for di�erent years as shown in Figs. 2 (a)

and 2(b), proving generality of observations.
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Figure 1: Texas Dataset: (a) All Houses, (b) Mixture
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Figure 2: Irish Dataset: (a) All Houses, (b) Mixture

3.2 Gaussian Approximation of the Data

With an aim to ease mathematical tractability and exploit certain

known properties of Gaussian distributions, we seek to convert the

approximate lognormal distributions to an approximate Gaussian

distributions. For this, we use a (NIST recommended) power trans-

formation procedure [2] which is described by the following:

Given a data set d = {d1,d2 · · · ,dn }, where n denotes the total

number of data points, the power transformation of d is given by

d (λ) = {d1 (λ), · · · ,dn (λ)}, such that:

d (λ) =





(d )λ−1
λ

if λ , 0;

ln (d ) if λ = 0
(1)

where λ is an appropriate transformation parameter chosen from

a possible set λ∗ ∈ R, such that

λ = argmax
λ∈R

f (d ,λ∗)

where f (d,λ∗) is the logarithm of the likelihood function given by:

f (d , λ) = −n
2
ln



n
∑

i=1

[d i (λ) − d̄ (λ)]2
n


+ (λ − 1)

n
∑

i=1

ln (d i ) (2)

such that d̄ (λ) =
∑n
i=1 d

i (λ)
n . Using Eqn. 1, any P i can be converted

to obtain an approximate gaussian distributed r.v. denoted as pi .

For Texas dataset, we found λ = −0.03, which is closer to zero.

Therefore, to simplify implementation, we used e�ective λ = 0

for the transformation of both datasets in this paper. Note that our

proposed model does not require the data to be perfectly Gaussian.

We performed the above procedure for 3 subsets of smart meter

population sizes (see Fig. 3(a)) to prove topology invariance on the

Gaussianity. Hence, we validate the claim that, power consump-

tion of meters in a micro-grid can be approximated by a Gauss-

ian distribution. We also denote pit = ln(P it + 2) as the e�ective

power consumption report from each i on a power transformed

scale (since λ = 0) at any time slot and pmix denotes the aggre-

gate mixture. The transformation is done to exploit certain statisti-

cal properties exhibited by the Gaussian distributions. The extent

of Gaussianity is depicted through a Q-Q plot in Fig. 3(b). While

the Gaussian approximation resulted in 67% and 69% of the data-

points to be within the �rst standard deviation (for texas and irish

datasets), the distributions remain unbalanced around the mean

with 64% of the total datapoints on the left and 36% on the right of

the mean on average. This asymmetry contributes to unique obser-

vations under orchestrated attacks as discussed in Section 5.1.1.
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Figure 3: pmix for Texas Data: (a) Various N , (b) QQ-Plot

3.3 Time Domain Granularities

While real data is collected hourly (known as time slots t ), we cal-

culate various consensus/anomaly detection metrics at the end of

a �nite ‘time window’ (denoted by T ), that is a collection of l time

slots. Here, l depends on how �ne or coarse grained monitoring is

desired. Let Tr e be the average time taken by customers to react

to the environmental factors that may trigger sudden legitimate

changes in power consumption in houses. For example, in warmer

sunny days during winter season, it is expected that most houses

would reduce heaters within some timeTr e < l . Su�cient research

exists to show that using l = 24 hour window is reasonable [9].
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Therefore, T has a daily time granularity. For con�rming the pres-

ence of falsi�cation, we calculate a cumulative average of anomaly

detection metric over a ‘sliding time frame’ of F time windows.

4 ATTACK MODEL AND IMPLEMENTATION

In this section, we elaborate on four factors characterizing the ad-

versarial strategy, namely, fraction of compromised meters, attack

types, falsi�cation margins, and falsi�cation distributions that can

be employed by organized or isolated adversaries. To the best of

our knowledge, we have ensured that the numbers quantifying

the adversarial strategy do not favor or suit the proposed defense

mechanism. Since real malicious data samples are not available, we

generated the malicious samples by applying the following four as-

pects of adversarial strategy over the real dataset:

Fraction of Compromised Meters: Power consumption data

from smart meters can be sabotaged by an organized adversary or

isolated rogue customers [13]. Let organized adversaries compro-

mise M meters based on their attack budget and control a certain

fraction M
N = ρmal ∈ [0,1) of the N smart meters. For example,

ρmal = 0.50, means 50% of the total number of meters is compro-

mised. Note that ρmal could be very high in decentralized micro-

grids, where N is typically smaller. Unlike most existing works,

we explore the full possible spectrum of ρmal varying from 1%

to 90% for varying network sizes N , while studying performance.

Although the defense model is focused on an orchestrated attack

with larger ρmal , we show in Section 6, that our trust model is also

identi�es small scale isolated attacks from lone ‘rogue meters’.

Attack Types: The organized adversaries falsify data from multi-

ple compromised meters simultaneously using one of falsi�cation

attacks deductive, camou�age, additive, based on its objective and

intent. Falsi�cation of data is achieved by accordingly changing the

actual power consumption value P it by some amount δt . For exam-

ple, for deductive falsi�cation, the actual power consumption data

P it from the i-th compromised meter at time t is modi�ed as P it −δt .
Similarly, for additive falsi�cation, the modi�ed attack sample is

P it + δt from a compromised meter. For camou�age falsi�cation,

half of the compromised meters launch additive falsi�cation while

the other half launches deductive falsi�cation with the same aver-

age value of δt . The δt amount of false data is chosen randomly

from within a margin (δmin ,δmax ) according to some falsi�cation

distribution with a strategic average falsi�cation margin δavд .

Average Falsi�cation Margin: We denote δavд as the average

margin of false data for each compromised meter. The strategic

value of δavд by a rational adversary is some value that ensures

some minimum revenue but also prevents easy detection. Unlike

existing works, which either do not clearly articulate the exact

δavд (such as [14]) or achieve good performance for high δavд
values such as 1200W-1500W [11], 600-900W [1], 400W-430W [9],

we explore δavд values ranging from as low as 50Wupto 2000W, to

show the classi�cation performance over a broad range of possible

δavд values. The micro-grid sizes of 200, 800 and 5000 are used to

show the scalability of performance error rates with relative sen-

sitivity to δavд . We report improved performance on di�erent pa-

rameters for δavд > 350W that is compared to existing works, and

derive conclusions on δavд required to evade detection.

Falsi�cation Distribution:Additionally, we argue that the distri-

bution ofδt within (δmin ,δmax ) should be some variant of uniform

distribution such that the resultant shape of power consumption

distribution remains unchanged, making it a smarter and less ob-

vious attack. In contrast, the e�ect of normally distributed δt on

the resultant shape is quite apparent. A comparison between nor-

mally and uniformly distributed δt is shown in Figs. 4(a) and 4(b).

Note that, while our defense model works under both cases the re-

sults mostly consider variants of the uniformly distributed strategy.

Apart from this (a) Random strategy, the following falsi�cation dis-

tributions are also possible: (b) Periodic: Targeting the dynamic

or time of use (TOU) electricity pricing [11], where attacks are

launched on speci�c times when the price/demand of electricity

is high. We implemented a periodic strategy where attacks hap-

pen on every 12 hours in a day,(c) Incremental: Instead of imme-

diately attacking with the intended δavд , the adversary increases

its average falsi�cation margins by a minuscule amount dδ on ev-

ery time slot till it reaches its intended δavд . We implemented

an incremental strategy where dδ = 2W updated 4 hourly. (d)

Omission: No data reaches the utility since communication/data

is jammed/dropped. This is implemented by replacing data with

null values from a subset of meters.
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Figure 4: Attack Distribution (a) Obvious, (b) Smarter

5 PROPOSED FRAMEWORK
The proposed framework has twomajor parts: (a) Anomaly-driven

consensus correction model, and (b) Trust scoring model. The con-

sensus correctionmodel provides robust consensus as inputs to the

proposed trust scoring model, which improves the classi�cation.

5.1 Anomaly Driven Consensus Correction

The objective of the anomaly based consensus correction module

is to prevent the consensus measure (aggregate mean and standard

deviations) from getting too biased due to orchestrated attacks.

First, we show that the arithmetic mean is not a stable historical

invariant for aggregate power consumption. Therefore, historical

mean cannot be used as a consensus measure, and instantaneous

mean cannot be used since distinguishing legitimate changes in the

mean frommalicious changes is di�cult. The consensus correction

module has four phases: (i) proposed detection metric training, (ii)

inferring presence of organized falsi�cation, (iii) detecting type of

falsi�cation, and (iv) calculation of resilient consensus (resilient

mean and standard deviation (µMR and σMR ) in a time window.

5.1.1 Ratio of Harmonic to Arithmetic Mean. Now, we

show that the ratio of harmonic to arithmetic mean metric is bet-

ter than other consensus/aggregate based measures for anomaly

detection and consensus correction due to: (i) Higher invariance

to legitimate changes in consumption, (ii) Pythagorean mean spe-

cial asymmetry property facilitates attack detection.
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Letpmix
t = {p1t , · · · ,pNt } denote the power consumption data se-

ries on an power transformed scale gathered from N smart meters

at any time slot t (t is slotted hourly). The harmonic mean (HMt )

and arithmetic mean (AMt ) of aggregate power consumption in a

time slot is de�ned as:

HMt =
N

∑N
i=1

1
pit

AMt =

∑N
i=1 p

i
t

N

All HMt and AMt over the time window T are recorded, such

that the corresponding daily averages are given by HMavд (T ) =
(

∑24
t=1HMt

)

/24 and AMavд (T ) =

(

∑24
t=1AMt

)

/24 over this win-

dow T (T is a daily window consisting of 24 time slots). Similarly,

let the average daily standard deviation be denoted as SDavд (T ) =
(

∑24
t=1 σt

)

/24. Many prior works such as [14, 22, 24], propose the

use of arithmetic mean or its derived smoothening statistics (such

as Cumulative Sum/Moving Averages ofAMavд (T )) for sequential

anomaly detection. Thereafter, they propose to use historical mean

as a consensus in the event of an attack or the mean prior to the

attack detection. However, Fig. 5(a) shows how actual arithmetic

mean power consumption �uctuates for the same time windows

for three years [25] in the Texas dataset without showing any re-

peating historical pattern or a stable time series. Due to high �uc-

tuations of the instantaneous arithmetic mean, the error residual

between the derived smoothening statistic and the actual mean is

large. Thus, it will be di�cult to identify legitimate changes from a

malicious one bymonitoring the time series. It will also cause large

errors if historical arithmetic mean is used as a consensus. This is

evident from the high rates of false alarms and missed detection

reported in [7, 9]. To circumvent this problem, we propose to use

the ratio of HMavд (T ) and AMavд (T ) as the detection metric by:

Qrat io
avд (T ) =

HMavд (T )

AMavд (T )
(3)

We denote µratio and σratio as the mean and standard deviation

of Qratio
avд (T ) observed in the dataset. Let us explain three reasons

for choosing Eqn. 3, as a metric for detecting presence of attacks.

(i) High Invariance to Legitimate changes: From our experi-

mental study, we observed that the time series of Qratio
avд (T ) sam-

ples over di�erent years and across multiple datasets is highly sta-

ble over time in contrast to the time series of arithmetic mean

of power consumption. Fig. 5(b), shows the daily Qratio
avд (T ) over

three di�erent years (2014, 2015, 2016) for the Texas dataset, while

Fig. 6(a) shows the ratio Qratio
avд (T ) for six di�erent meter popu-

lations for a completely di�erent AMI data set in Dublin, Ireland

during 2009-2010. Both, Figs. 5(b) and 6(a), prove thatQratio
avд (T ) is

a highly stable invariant metric across di�erent data sets, as com-

pared to the aggregate arithmetic means. Note that,Qratio
avд (T ) can-

not exceed 1, due to the HM ≤ AM property [18].

Apart from the stability over time, Qratio
avд (T ) also exhibits his-

torical stability over di�erent years, unlike arithmetic mean which

shows large di�erences in the readings on the same day in succes-

sive years. In fact, without using moving averages, the standard de-

viation of the ratio samples σratio of Qratio
avд (T ) is 0.017 and 0.012

for the Texas and Irish datasets respectively. Using a smoothening

moving average will further lower the standard deviation and pro-

duce a more stable invariant under normal conditions.

Additionally, higher the variance in the power consumption

dataset, the lesser is the mean of ratio sample distribution and vice-

versa. Hence, we conclude that the Qratio
avд (T ) is a more robust

metric for anomaly detection than other typical measures such

as mean, mode, median due to its high invariance to legitimate

changes in data over successive days across years.
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Figure 5: (a) AM (T ) unstable, (b) Qratio
avд (T ) of Texas Dataset
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Figure 6: (a)Qratio
avд (T ) of Irish Dataset, (b) Ratio Distribution

(ii) Special asymmetry property of Pythagorean Means:

Asymmetric growth (or decay) rates of harmonic mean compared

to the symmetric growth (or decay) of arithmetic mean under

various attacks, is another reason which helps to infer the pres-

ence and type of falsi�cation precisely, quickly, and with high

sensitivity. With this attack context information, it is possible

to estimate the true consensus accurately. When a subset of pi

values in pmix are increased/decreased (with a false bias δ ), the

AM value grows or decays linearly. On the contrary, the behavior

of HM is inherently di�erent and can be summarized as follows:

Property (1) : We observe that HM grows slower and decays faster

than corresponding AM , when sub-portions of a data set gen-

erated from multiple sources experience additive and deductive

manipulation, respectively.

Property (2) : Growth and decay rates of HM under the same δ

is unequal when used for additive and deductive attacks, unlike

AM which show equal rates. In HM, decay rate is larger than its

growth rate induced by the same δ .

Property (3) : We observed that growth and decay rates of HM

compared to AM and the e�ects on the proposed ratio metric also

depend on (a) whether the datapoint being biased are on the lesser

(left) or greater (right) than the actual arithmetic mean, and (b)

the magnitude of δ .

The above properties can be mathematically illustrated by the

following: Consider a sorted series with two numbersU = (u1,u2)

such that its mean and standard deviation is (AM ,σ ). In Fig. 7, the

x-axis represents the variable u1. Let us �x the u2 as constant such

that u2 = {2} is a singleton set, while u1 is a set such that u1 ∈ R+.
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Figure 7: Growth Decay Rates of HM and AM

Hence, the cartesian product of u1 and u2 is the set U = u1×u2,
whose elements are a two tuple dataset. In Fig. 7, let the y-axis

represent the value of AM (u1,u2) or HM (u1,u2) for every possi-

ble element in the set U . Given any element say U = (1,2), visu-

alize increasing/decreasing value of u1 as mimicking additive or

deductive biases to U = (1,2), that changes both the AM (u1,u2)

or HM (u1,u2). In Fig. 7, AM function of (u1,2) ∀ u1 ∈ (0,∞]
(represented by the solid blue line) shows a linear growth with in-

creasingu1, and is neither strictly concave or convex. On the other

hand, the HM function of (u1,2) ∀ u1 ∈ (0,∞] (represented by

a dashed red line) is a strictly Schur-Concave Function [32]. This

di�erence in concavity is the theoretical basis that trigger changes

in the proposed ratio metric under various attack types and is il-

lustrated below using the same example.

Illustration of Properties: For dataset U = (1,2), let the AM =

1.5 andHM = 1.33 be represented by pointsA andH as marked in

Fig. 7. Hence, their ratio value say Qratio
=

HM
AM = 0.88.

Suppose inU = (1,2),u1 = 1 is biased with deduction of δ = 0.3,

such that U − = (0.7,2). Points a− = 1.35 and h− = 1.037 corre-

spond to the biased arithmetic and harmonic means respectively.

Thus, decay in HM and AM are ∆HM− = h− − H = −0.293
and ∆AM− = a− − A = −0.15. Ignoring the signs which sig-

nify decay, |∆HM− | > |∆AM− |, proving that HM decays faster

than AM. Note that the biased ratio of HM to AM in this case

is Q− = 0.76 < Qratio
= 0.88. Suppose, the same δ = 0.3

is instead added to u1. However, with δ = 0.3, added to u1, the

Q+ = 0.95 > 0.88 = Qratio . Since |0.76 − 0.88| > |0.95 − 0.88|, it
proves Property 2. While, we may be temped to believe that addi-

tive attacks increase ratio while deductive attacks decrease them,

this is not true. Consider an additive bias value of δ = 3.5 instead,

that is added to data-pointu1 = 1. The resultant ratio in this case is

Q+ = 0.82, which is a decrease from the original ratio 0.88. There-

fore, the fact that magnitude of δ , plays a role in the observed rise

or drop in the ratio is established. Finally, suppose the δ = 0.3 were

added to u2 instead of u1. Note that in U = (1,2), the data-point

u2 = 2, is on the greater than (right side) of the true mean of U

(= 1.5). Now the Q+ = 0.80 < Qratio
= 0.88. This proves that posi-

tion of the data-point being biased by an δ , w.r.t to true AM also plays

a role in the ratio change. The above clearly explains property 1,2

and 3. The necessary and su�cient conditions of δavд , for observ-

ing a drop or rise in ratio metric under each attack type and the

e�ect of biased datapoint’s position relative to the true mean is de-

tailed in Appendix A. The basic conclusion from the illustration in

Appendix A, is that the ratio metric decreases only when the biased

datapoints move original datapoints away from the true arithmetic

mean in a way that �attens the shape of the distribution (increas-

ing the sample standard deviation), while, rise in ratio occurs if the

biased datapoints move original datapoints closer to the true mean

(increasing the sample standard deviation).

(iii) E�ect of Attacks on the Ratio Metric : Sincewe know that

datapoints regardless of meter ids aremore frequently on the lesser

than of the mean (as shown in Section 3.2), it is a natural conse-

quence that the more attacked data-points, will also be lesser than

the true mean, regardless the attack type. Given this, a deductive

attack, will cause more datapoints to move further away from the

true mean. Therefore, we can conclude that the ratio is going to de-

crease for deductive attacks, regardless the δavд . For camou�age

attacks, also since the HM has a higher decay rate than growth rate

of AM for the same δ bias, the ratio is bound to decrease regard-

less the δavд . In contrast, the additive attacks with lower margins

of false data will cause the �nal biased datapoints to be proximate

to the true mean, thus reducing the sample standard deviation, and

therefore increasing the ratio metric. However, for higher margins

of δavд , the biased datapoints will end up being greater than true

mean, and the ratio will show a decrease.

Above conclusions on increase and decrease of ratios have been

experimentally veri�ed in Fig 8, where ρmal = 40% was used for

di�erent attacks with varying δavд . The deductive and camou�age

attacks correspond to a δavд = 600W . The additive small and ad-

ditive large denote the ratio lines under an attack of δavд = 200W

and δavд = 800 respectively. The exceptions to the above observa-

tions may happen, if the attacker possess complete knowledge of

system, defense mechanism and insider leaks; the details of which

is discussed in Sec. 5.2.4.
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5.1.2 Inferring presence of Organized Falsi�cation: We

know that asymmetric growth and decay rates of the HMavд (T )

and AMavд (T ) trigger a decrease or an increase in the Qratio
avд (T ),

as false data is injected from a subset of numbers generating these

means. Leveraging this knowledge, we propose the unsupervised

and semi-supervised versions of the detection criterion that indi-

cates the presence of an organized falsi�cation, and thereby the

need to invoke a suitable type of consensus correction.

A sustained drop or rise in ratio indicates malicious activity.

Therefore, we need a collective anomaly detection (monitoring a

subsequence of states) instead of point anomalies (monitoring each

state independently). To capture collective anomalies, we de�ne a

sliding frame that contains the cumulative average of Qratio
avд (T )
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samples over the last F days. If the cumulative average in the cur-

rent frame F has deviated from the cumulative average in the pre-

vious frame F − 1 by a threshold ϵ , then this forms a premise for

a sustained change in the ratio metric. Formally, the unsupervised

detection criterion is:

Qratio
avд (F ) :





∈ Qratio
avд (F − 1) ± ϵ No Anomaly;

< Qratio
avд (F − 1) − ϵ Orchestrated Attack;

> Qratio
avд (F − 1) + ϵ Low Additive Attack;

(4)

where ϵ is a threshold parameter such that ϵ ∈ (0,3σratio]. The

choice of ϵ controls whether the consensus correction step will be

invoked or not. The appropriate ϵ can be learned by studying the

trade-o� between ϵ and classi�cation error rate, over various δavд
and ρmal combinations as shown later in Figs. 11(a) and 11(b). Note

that, the required sensitivity of ϵ to attacks need not to be very

precise, since the purpose of Eqn. 4 is to only catch evidence of

orchestrated attacks, that disturb the consensus signi�cantly and

therefore need the consensus correction. In contrast, isolated or

smaller scale attacks (with low δavд/ρmal ) do not drastically devi-

ate the ratio metric and thus may not get detected under the given

ϵ . However, at the same time such small scale attacks will also not

a�ect the consensus in a way that causes large classi�cation errors.

Therefore, observingQratio
avд (F ) over time is enough to conclude

whether an orchestrated falsi�cation is happening. If Qratio
avд (F )

has decreased (or increased) more than ϵ , than the previous frame

Qratio
avд (F − 1), it is an evidence of the start of an orchestrated fal-

si�cation. Let this frame be marked as Ftr iд , such that Ftr iд − 1 is
the last frame with a normal ratio value.

Now, after a period of sustained drop (or rise) in the ratio metric

outside the ϵ , an increasing (or decreasing)Qratio
avд (F )may indicate

that attacks are now ceasing. As seen in Fig. 8, the ratio increases

(decreases) back to the normal rangeQratio (Ftr iд −1)±ϵ value on
the 72nd day, when our implemented attack was stopped on the

68-th day. Note that, isolated attacks from individual customers,

may not have a drastic e�ect on the ratio margin (±ϵ), and these

attacks are countered by the trust model discussed later. This is a

very simple but very powerful technique to di�erentiate between

legitimate changes due to environment and false data injections.

Semi-Supervised Version of Detection Criterion: One disadvantage

of the unsupervised detection criterion (Eqn. 4), is that it may miss

incremental attacks where δavд slowly increases over time, such

that the drop of ratio compared to the previous time window will

be within the ϵ . However, if enough historical (attack free) data

is available (e.g. the Texas Dataset), the historical normal range

Qratio
avд (Fhist ) ±ϵ of the ratio can be learned easily given its stable

nature. In such as case, even with incremental attacks, the ratio

metric will eventually cross the learned stable historical range.

5.1.3 Inferring Type of Data Falsi�cation: Once falsi�ca-

tion is inferred at Ftr iд , observing the direction of HMavд (T ) and

AMavд (T ) growth or decay, indicates the type of data falsi�cation:

additive, deductive, camou�age. For notational simplicity, hence-

forth we will refer to HMavд (T ) and AMavд (T ) as HM and AM

respectively. The resilient mean ( µMR (T ) ) and standard deviation

( σMR (T ) ) for windowT , is referred as µMR and σMR respectively.

If both HM and AM values have increased compared to Ftr iд ,

then it is an additive attack. In deductive attack, both HM andAM

decreases from the Ftr iд . In camou�age, the AM does not change

much and HM decreases. The various possibilities are depicted in

Table 1. A pictorial view of this is shown later in Fig. 12 and Fig. 13.

5.1.4 Consensus Correction: We calculate the resilient

mean at each windowT (µMR ), as an estimation of the actual mean,

given the information on presence and the type of attack. We ex-

ploit the robustness of HM and AM , under di�erent attack types

for estimation of the actual mean.

Table 1: Inferring Attack Types

Ratio HM,AM Inference µMR

Down Up,Up Additive HM-(AM-HM)

Down Down,Down Deductive AM+(AM-HM)

Down Down,Similar Camou�age HM

Similar Up,Up Legit Up AM

Similar Down,Down Legit Down AM

Mean Correction: The choice of µMR is guided by how the de-

tected attack type biases the actual values of HM and AM . For ad-

ditive attacks, the growth in HM is less than AM due to slower

growth rate although both increases from actual AM . Hence, we

deduct corrective factor (AM −HM ) from the observed HM to es-

timate the µMR . For deductive attacks, HM has a faster decay rate

than AM . Since, HM ≤ AM , for deductive attacks, HM is even

lesser than the reduced AM . Hence, we add to the observed AM ,

the corrective factor (AM − HM ), to estimate the µMR such that

µMR = AM + (AM −HM ) is closer to the actual mean and far from

deductive outliers at the same time. We choose to add (AM −HM )

to the AM because of larger HM drop for deductive attacks can

cause (AM − HM ) value to be very high (when ρmal and/or δavд
is high). Adding it toHM may be far less than the truemean. Hence,

adding it to AM makes µMR closer to the actual AM.

For camou�age attacks, HM works as a good measure of µMR

due to its stability to partial presence of false additive data. In fact,

using the HM for camou�age helps distinguish meters launching

additive falsi�cation frommeters launching deductive falsi�cation,

becauseHM is not symmetrically distant from the additive and de-

ductive outliers, unlike AM . The deductive meters will have trust

values lesser than honest meters but higher trust than additive me-

ters. This is becauseHM will be closest to the data generated from

honest meters followed by deductive and furthest from data gen-

erated from additive meters. Alternatively, if the separate identi-

�cation of additive and deductive outlier meters are not desired

AM may be used for µMR . In general, AM is more robust mean for

camou�age attacks, when ρmal for camou�age attack is ≥ 50%.

The extent of drop in the Qratio
avд (T ) is an indication of ρmal and

δavд . The larger the drop inQ
ratio
avд (T ) larger is the ρmal and δavд

and larger the bias in the observed mean. In case, no organized at-

tack is detected from anomaly detection phase, µMR is equal to the

observed AM . Table 1, summarizes the calculation of µMR .

Standard Deviation Correction: The σMR will increase regardless

the type of data falsi�cation attack (except for low additive attacks).

Therefore, a directional correction is not possible like µMR based

on the attack types. Using the measured σMR of the last time win-

dow, before detection of orchestrated attack, may not be wise since
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there may be a longer delay between the launch and the actual de-

tection of the falsi�cation (such as in incremental attacks). Alterna-

tively, one may be tempted to use the historical value of SDavд (T )

on the correspondingT -th day in the previous years. However, this

would add to the storage complexity. Moreover standard deviation

on the same days on successive years are not necessarily same. We

studied the distribution of SDavд (T ) over the years and found that

a distinct mode of SDavд (T ) distribution occurs at 425 − 475W

range in the non-transformed scale. The probability of SDavд (T )

being around 425 − 475W is very high over 50% while all other

ranges are less than 10%. As an approximation, we choose σMR as

ln(450), whenever orchestrated attacks have been con�rmed for us-

ing it in the subsequent trust model. The distribution of SDavд (T )

is shown in Appendix B.

5.2 Consensus Aware Trust Scoring Model

The trust scoring model has three parts: discrete rating criterion,

FoldedGaussian distribution basedweights, inverse power law ker-

nel based trust metric.

The discrete rating criterion assigns a rating level to each me-

ter i , by comparing proximity of its reported data pit with the re-

silientmean consensus µMR , over a timewindow of lengthT . Then,

weights are assinged to these discrete rating levels according to

both prior frequency of occurrence, density of each rating level in

a Folded Gaussian distribution, and their proximity to µMR . This

step �nally yields an aggregate weight Ri for each i . Then, an in-

verse power law kernel is used to map the Ri weights into a trust

value TRi between 0 and 1, for linearly separable classi�cation of

compromised meters from honest meters.

5.2.1 Discrete Rating Levels: . We propose a criterion to assign

a discrete rating level to the reported pit based on its proximity to

µMR . The σMR is the corrected standard deviation of all pit from

the calculated µMR in the window T . We de�ne ∆abs = σMR . The

absolute di�erence between the pit for any meter i and the µMR is

denoted by Θi
dif f

= |pit − µMR |. Given this, the discretized rating

levels denoted by l is given by Table 2, using the 68−95−99.7 rule
for Gaussian distributions to assign pit as belonging to one of the

4 possible rating levels (bins) according to proximity to the µMR .

The highest rating 4 is closest in terms of proximity to µMR , and

similarly lower ratings are obtained if the meter’s data is further

from the µMR . Over a time window of say T hours, the ratings

on each time slot t for meter i is collected to form a rating vector

sequence r i , which is sorted as r isor t = r0 ≤ r1 ≤ · · · ≤ rT−1.

Table 2: µMR based Discrete Rating Levels

Scenario Discrete Rating Level(l)

Θi
dif f

≤ ∆abs 4

∆abs < Θi
dif f

≤ 2∆abs 3

2∆abs < Θi
dif f

≤ 3∆abs 2

otherwise 1

5.2.2 Folded Gaussian based Weights: . Now we �nd the corre-

sponding (normalized) weights of each rating in the r isor t which

is denoted asW i
= w0, · · · ,wT−1. Figs. 9(a) and 9(b), signify the

approximate Gaussian nature of the rating distributions, under no
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Figure 9: Real Rating Distribution (a) Meter 1 (b) Meter 2

attacks for two real meters from Texas dataset. It is clear that the

most common and highest rating level is 4 followed by all oth-

ers. This gaussian nature is known as Folded Gaussian where vari-

ables around the mean do not have di�erent signs, since only the

magnitude of the level is important. Intuitively, meters with more

observed lower ratings should have lesser weights. The sorting

makes it easier to give lower weights to smaller ratings through

Eqn. (5) by dividing the rating space over the considered time win-

dow. Then via Eqn. 6, the distance between this weight xt from the

highest rating level (which is 4 known from no attacks) is deter-

mined. If the distance is larger, it assigns a non-linearly decreasing

density value based on the shape of Gaussian distribution.

Additionally, higher percentage of lower ratings in a window,

will give even lesser weights to those smaller ratings, than a sce-

nario with lower percentage of low level ratings and vice versa

achieved through Eqn. (6). We denote µBR = 4 as the best or high-

est possible rating level, σ i
dr

denote the standard deviation of dis-

crete ratings of each meter from µBR = 4 in a window length T .

The σ i
dr

for each meter will be di�erent based on di�erent obser-

vations compared to commonmixture data, which captures certain

individual di�erences in consumption. First, a weight parameter xt
distributed between 1 to 4 is calculated as:

xt = 1 +
(K − 1)t
(T − 1) ∀ t = 0, · · · ,T − 1 (5)

where K = 4, is the total number of discrete rating levels in the

system, T is the window size. Therefore, the corresponding raw

weight cwt of the rating at time index t is:

cwi
t =

1

σ i
dr

√
2π

e
− (xt −µBR )2

2(σ i
dr

)2 (6)

The weights yielded from Eqn. (6), are normalized by wi
t =

cw i
t

∑T−1
t=0 cw

i
t

. Let I (l ,t ) be an indicator function which indicates

whether a particular rating level l occurs in that time slot. All

weights corresponding to each unique rating level l , such l =

{1, · · · ,4} within T is added up, such thatWD (l ) =
∑T−1
t=0 wt I (l ,t ).

where, I (l ,t ) =

{

1, If l occurred in time slot t

0, Otherwise
(7)

For example, sum of weights inW i corresponding to each occur-

rence of rating level 2 is denoted byWD (2). The aggregate weight

rating Ri of the i-th meter is a continuous value between 1 and 4

and is given by:

Ri =

K
∑

l=1

l ×WD (l ), Ri ∈ {1,4} (8)
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5.2.3 Inverse Power Law based Trust Value: . We know that the

Θi
dif f

is an unsigned value which can be visualized as a folded

Gaussian distribution, where ratings 3,2,1 regardless of whether

they are on the right or left of the rating level 4 are treated as

the same random variable. Therefore, the aggregate weight (Ri ),

when interpreted as a trust score must also follow a folded gauss-

ian shape, meaning Ri = 4 represents the greatest trustworthiness

followed by a exponential ‘discounting’ of trust, as Ri decreases.

For this, we propose the inverse power law inspired kernel trick to

transform the Ri into a �nal trust value, TRi , between 0 and 1, by:

TRi =
1

(K )η
(Ri )η , TRi ∈ {0,1} (9)

where η is a scaling factor controlling the rate of discounting. The

Eqn. (9), gives exponentially less trust to Ri as it decreases from the

maximum value of 4, in adherence to the Folded Gaussian shape

of the rating distribution of legitimate meters (shown in Figs. 10(a)

and 10(b)). The scaling factor η depends on the skewness of folded

gaussian in the benign data set. The Eqn. (9) produces trust val-

ues such that compromised and non-compromisedmeters have lin-

early separable, which enables to calculate an unsupervised thresh-

old for classi�cation. The trust maintenance over time uses a for-

getting average [4] for periodic attacks.

Ratings
1 2 3 4

P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

Meter #1
Meter #2

Meter #3

(a)

R
i

0 1 2 3 4

T
ru

s
t 

V
a

lu
e

0

0.2

0.4

0.6

0.8

1

η = 7
η = 6

η = 5
η = 4

η = 3
η = 2

(b)

Figure 10: (a) Folded Gaussian (b) Inverse Power Law Kernel

5.2.4 Under Advanced Persistent Threats: . For advanced per-

sistent adversaries, possessing full knowledge of our defensemech-

anism is ‘not’ enough to escape detection completely. The adver-

sary has to ensure that deviation in the ratio metric never exceeds ϵ

on every timewindow. To completely escape detection, it is manda-

tory for adversary to possess four additional knowledge: (i) Closed

Form Expressions of Harmonic Means (ii) Exact (non-attacked)

harmonic and arithmetic mean on each time slot (iii) ϵ value (iv)

skewness of data distribution. The skewness knowledge is public

(right skewed) and has no attack cost. Di�erent microgrids will

have completely di�erent ϵ values, hence the attacker needs to

know ϵ of each micro-grid. The ϵ value may be leaked by com-

promising an utility insider for each micro-grid, or the database

storing all the ϵ values. Both possibilities increase the attack cost.

Assuming, that attacker knows the ϵ , it further needs the exact

knowledge of HM and AM in each time slot. This is rather implau-

sible for adversary to know at runtime, unless it compromises 100%

of the meters. This is because the means do not have any stable

historical trend or time series, so attacker cannot reliably predict

them. Unless actual HM and AM is known, one cannot ensure that

the resultantQratio
avд (F ) from the attack will have a ratio deviation

that is lesser than the ϵ . Most importantly, the exact closed form ex-

pressions of harmonic means do not exist, and is an open problem

in real analysis. Several approximations exist [18], but note that

it does guarentee success everytime and the defender needs suc-

cess only once to raise an alarm. Even if the attacker knew every-

thing somehow, we show that the signatures are visually evident

for δavд values as low as 50W (see Appendix C).

The sensitivity to successful identi�cation of compromised me-

ters is di�erent from sensitivity to successful detection of presence

of orchestrated attacks. Given our model, we report that if that

attacker’s δavд < 300W , the missed detection rate drastically in-

creases to 52%, since such δavд is much less than standard devi-

ation which ends of with higher rating levels. For the attacker to

keep atleast 50% of its compromised meters undetected, the high-

est possible δavд = 300W when ρmal = 40%. However, at such

low δavд , the impact per unit time is less (see Appendix D).

6 EXPERIMENTAL RESULTS
Data sets from 200, 700, and 5000 houses, were obtained

from PeCanStreet Project [25] and Irish Social Science Data

Archives [26], containing hourly power consumption data from

Texas, Austin and Dublin, Ireland respectively. The di�erent micro-

grid sizes mimic decentralized and centralized deployments of de-

fense frameworks. We studied results of anomaly detection and

trust model for all types of data falsi�cation. Additionally, we stud-

ied the performance scalability of Irish data for 5000 houses. For

anomaly detection results, a period of no attacks is followed by a

period of attacks. Deductive attack results have lesser δavд than

the others, since realistic values of power consumption are lower

bounded by zero. For clarity of representation, we show anom-

aly detection results using cumulative moving averages over time

frame (F ) of length 7 days. Additionally, for easy depiction of me-

ter classi�cation results, all the compromised meters are assigned

lowermeter id than the honest ones. Finally, we show performance

over all values of ρmal and δavд and compare with existing work.
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Figure 11: Error Rates: (a) ρmal = 40% (b) ρmal = 10%

6.1 Choice of ϵ for consensus correction

The choice of ϵ decides, whether the anomaly detection raises an

alarm or not, which in turns decides whether or not the consensus

correction is invoked that subsequently a�ects classi�cation error

rates. In the real-world, the drop/change in the ratio depends on

the attacker’s ρmal and δavд values which is always unavailable

to the defense framework at run-time. To provide a suitable recom-

mendation on the desired ϵ , we performed some experiments for

an appropriate recommended value of ϵ .

It is important to understand that, smaller ρmal and δavд pairs

will cause smaller drop/change in the ratios and therefore, ϵ will

need to be small to capture them. However, this aspect is o�set by



ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea Bha�acharjee et al.

the fact that they also do not a�ect the consensus in a drastic way.

In that case, an unwarranted consensus correction will cause the

classi�cation errors to increase. As a proof, it can be observed from

Fig. 11(a) and 11(b), error rates are higher for very low values of

ϵ . On the �ip side, if the ϵ is too large, it will fail to raise alarm

for many possible ρmal and δavд pairs. Therefore, the consensus

correction will not be invoked, the trust scoring model will be ex-

ecuted with a biased consensus increasing the classi�cation error

rates. Again this could be veri�ed from Fig. 11(a) and 11(b), where

we see the error rates are very high when ϵ ∼ 3σratio . Naturally,

there will be an intermediate optimal region of ϵ , where the error

rates will be minimized. From computational study, we observed

that regardless the wide variation of δavд (from 350W to 1400W),

the error rate minima is achieved at ϵ = [1.5σratio ,2σratio] of the

ratio sample distribution, at ρmal = 10%,ρmal = 40% respectively.

Therefore, although ρmal and δavд may not be known apriori, the

recommended ϵ value could be learned a priori, by the above man-

ner. Following this, we have used ϵ = 2σratio , for all performance

results, even for results parameterizing di�erent ρmal .

6.2 Inferring Presence and Type of Falsi�cation

Figure 12(a), shows the directional changes in HM and AM and

ratio drop to distinguish between legitimate changes and mali-

cious attacks. In the �rst 57 days, HM and AM changed but

their growth/decay had a symmetry, indicating legitimate changes

in consumption through same Qratio
avд (F ) ∼ 0.92 value. How-

ever, when additive attack phase was launched at 58th day, the

Qratio
avд (F ) started to decrease from within 2 days of attack, due to

slower increase of HM compared to AM . The directional change

of both HM and AM values from Ftr iд (arrow upwards) indicate

the additive nature of attack. The inference of attack and its type

is quick. The Fig. 12(b) and Fig. 13(a), show real time anomaly de-

tection for deductive and camou�age attacks respectively.
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Figure 12: Ratio Change: (a) Additive (b) Deductive
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Figure 13: Ratio Change: (a) Camou�age (b) Over all ρmal

6.3 Robustness of Anomaly Detection over ρmal

Qratio
avд (F ) based detection is robust across larger fractions of com-

promised meters. Fig. 13(b), show that the drop in the Qratio (F )

is larger than the chosen ϵ (i.e. Qratio (F ) is decreased for ρmal <

85% values compared to the ratio when ρmal is 0%). This is the rea-

son for successful anomaly detection to higher fractions of compro-

mised meters. We also observe, that the minimum ratio is achieved

when ρmal ∼ 50%, for additive and deductive attacks. However,

for camou�age attacks, the ratio always decreases with increasing

ρmal , since the deductive portion of the camou�age attack only af-

fects the Harmonic Mean while keeping the AM same. Hence, the

resultant ratio decreases regardless the ρmal .
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Figure 14: Texas Dataset: (a) Additive (b) Deductive
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Figure 15: Texas Dataset (a) Camou�age (b) 700 houses
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Figure 16: Irish Dataset (a) δavд = 500 (b) δavд = 600

6.4 Compromised Meter Classi�cation

Fig. 14(a) and Fig. 14(b), show the performance in terms of steady

state trust values, under additive and deductive falsi�cation when

50% meters are compromised for δavд = 900 and δavд = 760 for a

small subset of 200 houses from Texas dataset. It is clear that com-

promised meter’s trust values, marked in red (asterisk) are signif-

icantly less than non-compromised smart meters marked in blue

(circles), such that they are linearly separable through a thresh-

old. The threshold is obtained through a standard K-means unsu-

pervised learning classi�er. Similarly, Fig. 15(a) shows the steady

state trust distribution under camou�age attacks with ρmal = 50%,

where additive and deductive meters are marked in green and red

while non-compromised are marked in blue. Fig. 15(b) con�rms

the scalability results for 700 houses in Texas dataset under an ad-

ditive attack. Note that, the false alarm (FA) rate scale well with 3%

and 2.8% for 200 and 700 houses given same δavд as evident from

Fig 14(a) and Fig. 15(b).
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To prove that our work is valid, scalable and robust across dif-

ferent data sets, we show the performance of steady state trust

values using a bigger subset of the Irish dataset with 1000 houses

for deductive attacks with lower margins of false data. Figs. 16(a)

and 16(b), shows trust value distribution and classi�cation perfor-

mance for δavд = 500 and δavд = 600. We see that even for a large

and di�erent region, with lower δavд than Texas data, the false

alarm and missed detection rates are 9% and 8%. A performance

accuracy for 5000 houses over all δavд and ρmal values and our

comparison with existing works is shown later in Sec. 6.9.
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Figure 17: (a) Fast Time to Classi�cation (b) Isolated Attacks

6.5 Time to Detection of Compromised Meters

One key advantage of our work is that it allows for quick identi�-

cation of compromised meters compared to most accurate classi�-

cation based methods [8, 9]. Fig. 17(a), shows that di�erence in the

evolution of trust values after the attack is launched. Since, it is not

legible to show every single meter in one plot, we plot the average

trust of the compromised set and the average trust of the honest

set over time. Fig. 17(a) shows that the average trust of compro-

mised set of meters falls below the threshold within 10 days from

the start of attack. Therefore steady state as described in Figs. 14(a)

and 14(b) is achieved within 10 days on average. Hence, rogue me-

ters are identi�ed before drastic damages have been in�icted.

6.6 Classi�cation against Isolated Attacks

Although, our work is focussed on defending against orchestrated

attacks, with large number of compromised meters, our work is

still valid in identifying isolated malicious meters that may act

alone. In such isolated attacks, the ratio drop may not be observ-

ably signi�cant unless δavд is abnormally high. However, this is

not necessary as such isolated attacks in such cases would not dras-

tically a�ect themeans and get revealed through the discrete rating

criterion and the proposed trust model. As an evidence, the trust of

two isolated meters launching additive and deductive attacks with

δavд = 600, (shown in Fig. 17(b)), is far less than other honest me-

ters. Hence, this is a proof of validity for isolated attacks. Hence

our defense model is sensitive to small scale low ρmal attacks.

6.7 Classi�cation against Omission and
Incremental Attacks

Fig. 18(a), shows the evidence that the proposed model can de-

tect omission attacks, where 30% of the meters dropped the data.

Fig. 18(b), is the performance against incremental attacks after 45

days of the initial attack was launched. The amount of false data

was incremented by 2W per meter every 4 hours.
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Figure 18: (a) Omission (b) Incremental

6.8 Avg. Performance over ρmal and δavд
One bene�t of our work is the robustness to higher fractions of

compromised meters compared to most consensus based methods

that fail when ρmal and/or the δavд is high. Fig. 19(a) and Fig. 19(b),

shows the average trust values of all compromised meters versus

honest ones. Our technique completely fails at 75% percentage

of compromised meters for a 200 house Texas dataset, which is

resilient. Similarly, Fig. 20(a), shows the average trust di�erence

among compromised and honest sets of meters over various δavд
under additive attacks, when ρmal = 50%. Fig. 20(b), shows the

performance of our model, when compromised meters alternate

true and false behavior periods based on pricing. We can observe,

that although the di�erence between trusts are lesser than earlier

case, we can still classify the compromised ones.
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Figure 19: Robustness over ρmal (a) Additive (b) Deductive
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Figure 20: (a) Avg. Trust vs. δavд (b) Periodic Attacks

6.9 Performance Accuracy & Comparison with
Existing Works

Fig. 21(a), shows our classi�cation error rate over di�erent δavд for

all 5000 houses in Irish dataset with ρmal = 40%. To understand

how it compares with existing works, Table 3 describes perfor-

mance of other works in terms of various parameters such as False

alarms(FA), Missed Detection(MD), learning type (S=supervised,

SU=semi-supervised), and time to detection. Apart from this, we

also qualitatively compare the level of privacy intrusion and com-

plexity compared to other schemes.

Fig. 21(a) shows that the worst case false alarm (FA) and missed

detection (MD) rate for δavд = 350W is 18% and 9%. At δavд = 400



ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea Bha�acharjee et al.

350 400 450 500 550 600 650 700
4

6

8

10

12

14

16

18

δ
avg

%
 E

rr
o

r

 

 

False Alarms

Missed Detection

(a)

Percentage of Compromised Meters
0 20 40 60 80

%
 E

rr
o

r 

0

5

10

15

20

25

Missed Detections
False Alarms

(b)

Figure 21: Classi�cation Performancewith Scalability (a)All

5000 houses over δavд (b) 200 houses over ρmal

(used in [9] over the same dataset,did not report ρmal ), our work

with FA = 13.8% and MD = 9.3% outperforms [9] at a high ρmal

value. At δavд = 600W, we have FA = 6% and MD = 5% out-

performing [1] that reported FA=9% and MD=8% but over a much

smaller set of 200 houses without scalability evidence and higher

δavд of 700W-800W that favors good performance. False alarms

increase with decreasing δavд and below 400 it increases more, be-

cause the standard deviation of the dataset usually range around

400W . To our best knowledge, only [19] using a synthetic data re-

ported lesser error rates than us. But this happens only if number

of users are less than, 25 making this comparison unfair and there-

fore not scalable. Apart from this, [11] reports detection of around

90%, but for δavд as high as 1200W to 1800W , which will facilitate

easy detection in our case anyway.

Fig. 21(b), shows our classi�cation error rate over di�erent ρmal

values for a smaller dataset of 200 houses in Texas. It can be seen

that missed detection and false alarm rates are less than 2% and 5%,

upto ρmal = 0.60. Above ρmal > 65%, the performance degrades,

but missed detection rates are still lower at 13% and 25%, where

other works fail completely. A smaller population is chosen since

realistic attack budgets may become a signi�cant ρmal percentage

for the smaller micro-grids sizes, making such a study practical.

Table 3: Comparison with Existing Work

Parameter Proposed CPBETD [9] ARMA [14] Entropy [1]

FA 13% 29% 33% 11%
MD 9% 24% 28% 8%
δavд 400W 400W NA 800W
ρmal ≥ 40%+ NA NA ≤ 40%
Size 5000 5000 200 200

Learning SU S S S
Detection Time ≤ 10 days 1 yr 1 mo 1 mo

7 CONCLUSION AND FUTURE WORK
We conclude that Harmonic to Arithmetic Mean ratios is an ef-

fective light weight indicator of organized falsi�cation over di�er-

ent types of falsi�cation attack and robust under higher fractions

of compromised meters while distinguishing legitimate changes

in the data to malicious ones and helps in consensus correction.

A semi-supervised folded gaussian trust model produces trust val-

ues, which identi�es meters launching both organized or isolated

attacks within a few days of attack, while preserving lower missed

detections and false alarms rates, evenwhen percentage of compro-

mised meters are signi�cantly higher. We showed that the method

is generic and applicable across di�erent real smart meter datasets.

In future, we will extend our work to attacks where δavд < 350

which may be realistic for advanced, persistent and long term ad-

versaries who sacri�ce immediate bene�t for long term gains. We

will discuss the theoretical details of the Pythagorean means for

very low δavд < 350 in the future work.
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Appendix

A NECESSARY AND SUFFICIENT
CONDITIONS FOR RATIO DROP AND RISE

In this section, we provide a detailed explanation of the neces-

sary and su�cient conditions for δavд in terms of ρmal = M/N ,

the mean µ and standard deviation σ of the power consumption

dataset. Each occurrence of ratio rise or drop given an attack type,

has an upper bound and lower bound on the value of δ that is

dependent on the position of bias as well. For example, k− (rlow ),

denotes the lower bound for a deductive attack on the datapoints

on the right side of the actual mean, and so on. The average case

approximate lower bounds are: k− (rlow ) = k+ (llow ) =

klow =
σ

M
+

σ
√
M

√

N −M
N − 1 + σ (10)

where + and − denote additive and deductive attacks and l and r

denote whether the position of biased data-points are on the left or

right side of the true mean. The average case approximate upper

bounds are: k+ (lhiдh) = k− (rhiдh) =

khiдh =max (σ 2
,

2σ

M
+

σ
√
M

√

N −M
N − 1 + 2σ ) (11)

The average conditions for deductive attacks on data-points the

left and additive attacks on datapoints on right side of the true

mean is:

k− (lhiдh) = k+ (rhiдh) = σ

√

N

N − 1 (12)

The worst case happens when additive attack changes only the

minimum value (say xi ) of the dataseries, and deductive attack

changes only the maximum value of the dataseries. The worst case

expressions have little practical signi�cance, but could be for pur-

pose of veri�cation. The worst case expressions for klow and khiдh
are:

klow > {( |xi − µ | + σ
√

N
N−1 ) + µ )} − xi , and

khiдh > |xi − µ | + σ 2

B DAILY STANDARD DEVIATION
DISTRIBUTION

The Fig. 22, shows the probability bar plot for SDavд (T ) for the

Texas dataset. We see that in most cases under no attacks, the prob-

ability of SDavд (T ), being between 425W-475W, centered around

450W is 0.52. Probabilities of all other ranges are much lesser.

Hence, the mode of the distribution is a reasonable approximation

for σMR , under attacks being con�rmed.
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Figure 22: Historical SDavд (T ):σMR approximation

C STEALTHY PERSISTENT ATTACKS

Fig. 23, shows an example that our ratio metric may work even un-

der ultra-stealthymargins of false data. Here ρmal = 40% and δavд
is as low as 50W , where our attack was implemented from the 41st

day. We estimated that this ρmal ,δavд will cause deviation less

than the ϵ with all the knowledge we possessed. Indeed, this works

well for most of the time, but is not guaranteed to escape detection

altogether, since all the meters whether compromised or not have

erratically changing data that is di�cult to predict beforehand. In

future work, we will propose a mathematical detection criterion

for such stealthy attacks.

Targeted one sided attacks, may happen theoretically, where at-

tack only attacks datapoints greater than the mean, then the obser-

vations will reversed. Deductive attacks may show an increase in

ratio, but in this case it will be restricted to only attacking 36% of

the total datapoints which restricts the attack signi�cantly.
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Figure 23: Deductive Attack with Full Knowledge

D COST BENEFIT UNDER MISSED
DETECTION

The revenue of an adversary per day who has M undetected me-

ters is given by: RR =
δavд×M×η×E

1000 , where η is the number of

reports a day, and E = $0.12 is the average per unit (KW-Hour)

cost of electricity in USA. In [29, 30] mentioned that cost of com-

promising the smart meter is about $500, in the puerto rico attack.

Here, utility maintainance personnel asked for $300 − $700 from

di�erent customers and hacked their meters that reported lesser

power consumption, and promised bene�t over time. The optimal

laser probes used for those attacks vary around 400. Therefore,

for compromising 80 meters, the attack cost is about $40,000. At

δavд = 300, we have missed detection of 42 meters, hence the

revenue for attacker is $36/day. At this rate, it would take about 3

years to recover the attack cost $40,000. For δavд = 350, only 7 me-

ters remain undetected by our method, with an average revenue of

$6/day. At this rate, it will take 18 years to recover the attack cost.

In future, we will explore how to identify meters reliably which

have δavд < 300W. That study will be useful if the attacker de-

vises/o�ers novel cheaper ways of attack. Also, note that in terms

of time to detection also our work is quicker (less than 10 days)

compared to existing works. Hence, an attacker who does not in-

tend to remain undetected, is not able to gain much attack revenue.
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