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ABSTRACT

Compromised smart meters sending false power consumption data
in Advanced Metering Infrastructure (AMI) may have drastic con-
sequences on the smart grid’s operation. Most existing defense
models only deal with electricity theft from individual customers
(isolated attacks) using supervised classification techniques that do
not offer scalable or real time solutions. Furthermore, the cyber and
interconnected nature of AMIs can also be exploited by organized
adversaries who have the ability to orchestrate simultaneous data
falsification attacks after compromising several meters, and also
have more complex goals than just electricity theft. In this paper,
we first propose a real time semi-supervised anomaly based con-
sensus correction technique that detects the presence and type of
smart meter data falsification, and then performs a consensus cor-
rection accordingly. Subsequently, we propose a semi-supervised
consensus based trust scoring model, that is able to identify the
smart meters injecting false data. The main contribution of the
proposed approach is to provide a practical framework for com-
promised smart meter identification that (i) is not supervised (ii)
enables quick identification (iii) scales classification error rates bet-
ter for larger sized AMIs; (iv) counters threats from both isolated
and orchestrated attacks; and (v) simultaneously works for a va-
riety of data falsification types. Extensive experimental validation
using two real datasets from USA and Ireland, demonstrates the
ability of our proposed method to identify compromised meters in
near real time across different datasets.
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1 INTRODUCTION

Advanced Metering Infrastructure (AMI) is one of the building
blocks of the smart grid technology, responsible for collecting data
on loads and consumer’s electricity consumption [16]. Such data
are usually collected by smart meters installed on the customer site,
and are expected to play a pivotal role in current and future smart
grids. For example, AMI data will be at the basis of critical tasks
such as automated billing and pricing, demand response, forecast,
load adjustments [31], and management of daily and critical peak
shifts. Hence, the integrity of AMI data is of utmost importance.
However, data falsification attacks target the integrity of AMI data.

In the literature, defense against the falsification of electric-
ity consumption data, has been mostly focused on electricity
theft, [9, 13, 14, 23], where individual customers are the primary
adversaries, who report lower than actual usage for lesser electric-
ity bills. Since the actually measured reading of power consump-
tion is reduced, such an adversarial strategy is a deductive mode
of data falsification. Such attacks from individual rogue customers
are usually uncoordinated and we term them as isolated attacks.

However, it is recognized that the cyber and interconnected
nature of AMIs can be exploited by more organized adversaries,
(e.g., organized criminals [30] and business rivals [10, 27]), who
are more equipped to bypass cryptographic defense, compromise
several smart meters, and alter a large or small amounts of data
simultaneously, thereby significantly impacting the smart grid’s
operations [10, 13, 30]. We term such attacks as orchestrated at-
tacks. Orchestrated physical attacks tampering the meter hardware
to produce false data was reported in [29, 30]. Thus, cryptography
or network intrusion alone cannot protect against this threat.

The goals of organized adversaries may not be restricted to mon-
etary benefits on the customer billing side resulting from electric-
ity theft. As an example, higher than actual power consumption
can be reported by a meter as a byproduct of static and dynamic
load altering attack [17] or hardware tampering affecting both cus-
tomers and utilities. Such an attack is termed as an additive mode
of data falsification. An additive attack launched by a utility on its
rival company’s meters, may induce loss of business confidence by
the customers of the victim company, due to higher bills. The ex-
pected future use of AMI data for demand response, forecast and
load planning may induce additive attacks to benefit customers by
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drawing undue incentives during demand response [1]. Note that,
an organized attacker may also perform a balancing additive and
deductive attacks to evade detection methods that use mean aggre-
gates, which are termed as camouflage mode of data falsification.

Previous works on orchestrated or isolated attacks have many
disadvantages. Classification based techniques use computation-
ally expensive Multi-Class Support Vector Machines (SVMs) [8, 9],
Neural Networks [7] and only focus on retrospective identifica-
tion (takes 6 months to 2 years), lacking the possibility of detect-
ing the attacks or compromised meters before serious damages.
Other works [1, 11] utilize a complete supervised approach by
maintaining continuous fine grained meter specific historical evi-
dence which is impractical and error prone for large scale AMI net-
works, and requires separate training for particular attack types.
State based detector needs special hardware which is very costly
as elaborated in Section 2. Some consensus based approaches
use traditional measures of central tendency such as median and
mean [14, 22, 23] or their variants. Such consensus measures get
easily affected by larger margins of false data or larger fractions of
compromised meters (when using instantaneous consensus met-
rics). They also fail under camouflage attacks (typical in orches-
trated attacks), may lead to larger error rates (when using historical
consensus metrics), since the mean aggregate of power consump-
tion data readily changes (proved later by real datasets).

In this paper, we propose an anomaly based consensus correc-
tion scheme and a semi-supervised learning based trust scoring
model, that detects occurrence as well as the specific type of falsi-
fication of power consumption data (referred to as attack context),
and then identify the compromised meters injecting such false data
in an AM]I, regardless of isolated or orchestrated attacks. Specifi-
cally, we propose a novel metric based on harmonic to arithmetic
mean ratios of daily power consumption to detect anomalies and
infer the attack context. Based on the inferred attack context, we
calculate a resilient mixture mean and standard deviation as an ap-
proximate consensus measures that weaken the alterations caused
by the false data from orchestrated attacks. Subsequently, a set of
discrete rating levels is associated to each meter over time using
the proximity of its reported data to this resilient mixture mean.
Then, a Folded Gaussian distribution based weighing procedure is
used to assign weights to each of the discrete rating levels. Based
on rating levels and weights observed over a time window, a trust
value is calculated per meter that classifies compromised meters.

We validated our model through extensive experiments on real
datasets acquired from two different AMI infrastructures with
varying sizes and regions. Results show that our proposed method
is able to detect and decipher additive, deductive, and camouflage
attacks launched by organized adversaries in real time. We demon-
strate that our method is robust to a high fraction of compromised
meters (upto 75%), is able to identify compromised meters from
non-compromised ones over margins of false data, thus making it
scalable for large sized AMI. Additionally, our method identifies
against isolated attacks from individual meters. We compare our
results with three existing works to show improvement.

2 LIMITATIONS OF RELATED WORK

Existing works on AMI data falsification can be classified into
Classification based, State Estimation based, and Consensus based
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methods. Classification based approaches [7-9] require extensive
training phases and multi-class SVMs for each customer separately,
in order to detect electricity thefts. They are computationally com-
plex and only allow retrospective identification. A study compar-
ing classification methods [7] concluded that the accuracy of most
of these models are only 60% to 70%, although they suffer from
privacy intrusion and complexity issues.

State based detection techniques [6, 12, 13] in contrast, require
additional monitoring hardware deployed at various points across
the AMI and distribution network for consistency checks. Addi-
tional hardware requirement is costly to the extent that it has been
recognized as a practical deterrent for utility providers to use such
solutions in scale. Some works monitor non-technical loss (NTL)
at the transformer meter. However, in [7] it is observed that NTL
could vary due to large number of factors other than attacks (e.g.,
legitimate changes due to unexpected weather) and hence suffers
from high number of false alarms. Moreover, the NTL approach
cannot detect for camouflage or load altering induced attacks.

Consensus based methods [14, 22, 23] use smoothened moving
average of median or mean power consumption for detection, fol-
lowed by information theory to identify meters. Most works ex-
cept [14] assume isolated electricity theft from a small number of
malicious meters that does not greatly bias the consensus. But this
assumption on unbiased consensus may not hold for organized
adversaries with higher attack budgets launching orchestrated at-
tacks. Some works such as [22, 23], use historical mean/median
power consumption for comparison of bad behavior. However, the
mean power consumption varies readily due to contextual factors
such as weather, customer habits etc. as shown later from studies
with our real datasets. Some works [1, 11] use a supervised learn-
ing of historical proximity patterns of each meter with instanta-
neous consensus, but fails for higher fractions of compromised me-
ters (> 40%). Additionally, supervised approaches become cumber-
some for large scale grids due to large training sets and require
labels which may not be available or accurate. Another major lim-
itation these methods, is that the assumed margins of false data
per meter are usually fixed and are also typically very high (600W-
1500W), which favors easier detection. As shown later, the mean
consumption can easily get affected by both larger margins of
false data or legitimate consumption changes (e.g., sudden weather
changes), which increases errors. This is evident from [14, 22],
where fine grained monitoring still yields accuracy of about 62%.
Note that cryptography based approaches are not enough since
physical attacks can also cause data falsification [29, 30].

3 SYSTEM ARCHITECTURE AND DATASET
DESCRIPTION

We consider a set of N smart meters reporting power consump-
tion data to a data concentrator periodically. Let the i-th smart me-
ter report a datum Pti at the end of time slot t. We model P; as
the realizations of a random variable (r.v.) P! denoting the power
consumption distribution of the i-th smart meter. A Neighborhood
Area Network (NaN), formed by a collection of houses is governed
by a NaN gateway node, that may act as data concentrators col-
lecting data from multiple smart meters in an area. Multiple NAN
gateways may be connected to form a Field Area Network (FAN),
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governed by a FAN gateway, which in turn is connected to the Util-
ity Wide Area Network (WAN).

Decentralized defense models are deployed at either NAN or
FAN gateways while centralized detection frameworks are de-
ployed at the WAN [3]. Since the datasets did not reveal the ac-
tual topology, we show results on smaller subsets of meters and as
a whole, to mimic both deployment possibilities and understand
performance scalability with varying micro-grid size N.

3.1 Dataset Description

To study the distribution of P!, we investigated hourly (i.e., t
slotted hourly) reported real power consumption datasets of 700
houses from Austin, Texas [25] and 5000 houses from Dublin,
Ireland [26] that belong to residential customers. We observed
that each P! follows an approximate lognormal distribution in the
Texas dataset. We also observed that all such log-normal distri-
butions are clustered close to each other such that the variance
between them is not arbitrarily large. The evidence is shown in
Fig. 1(a). Given this observation, we claim that the combination of
the individual lognormals can be well approximated by a mixture
distribution which is also log-normal (as evident from Fig. 1(b)). We
denote P™* as the random variable with approximate lognormal
mixture distribution considering all houses in the grid. The trends
from Texas dataset, also matches with trends from the same exper-
iments over the Irish dataset with similar results on consumption
for a different population for different years as shown in Figs. 2 (a)
and 2(b), proving generality of observations.
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3.2 Gaussian Approximation of the Data

With an aim to ease mathematical tractability and exploit certain
known properties of Gaussian distributions, we seek to convert the
approximate lognormal distributions to an approximate Gaussian
distributions. For this, we use a (NIST recommended) power trans-
formation procedure [2] which is described by the following:

Given a data set d = {d',d%--- ,d"}, where n denotes the total
number of data points, the power transformation of d is given by
d(A) = {d'(A),--- ,d™ (1)}, such that:
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(d)*r-1 .
_ T if A # 0;
A=\ (@) ifa=o ®

where A is an appropriate transformation parameter chosen from
a possible set A* € R, such that

A = argmax f(d,A")
AeR

where f(d,1") is the logarithm of the likelihood function given by:
no I [ -dAP N i
f(d,)k):—gln{; - }+(A—1);ln(d) @)

such that d(1) = w Using Eqn. 1, any P! can be converted
to obtain an approximate gaussian distributed r.v. denoted as p'.
For Texas dataset, we found A = —0.03, which is closer to zero.
Therefore, to simplify implementation, we used effective A = 0
for the transformation of both datasets in this paper. Note that our
proposed model does not require the data to be perfectly Gaussian.
We performed the above procedure for 3 subsets of smart meter
population sizes (see Fig. 3(a)) to prove topology invariance on the
Gaussianity. Hence, we validate the claim that, power consump-
tion of meters in a micro-grid can be approximated by a Gauss-
ian distribution. We also denote pi = ln(Pf + 2) as the effective
power consumption report from each i on a power transformed
scale (since A = 0) at any time slot and p™* denotes the aggre-
gate mixture. The transformation is done to exploit certain statisti-
cal properties exhibited by the Gaussian distributions. The extent
of Gaussianity is depicted through a Q-Q plot in Fig. 3(b). While
the Gaussian approximation resulted in 67% and 69% of the data-
points to be within the first standard deviation (for texas and irish
datasets), the distributions remain unbalanced around the mean
with 64% of the total datapoints on the left and 36% on the right of
the mean on average. This asymmetry contributes to unique obser-
vations under orchestrated attacks as discussed in Section 5.1.1.
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3.3 Time Domain Granularities

While real data is collected hourly (known as time slots t), we cal-
culate various consensus/anomaly detection metrics at the end of
a finite ‘time window’ (denoted by T), that is a collection of [ time
slots. Here, I depends on how fine or coarse grained monitoring is
desired. Let Ty, be the average time taken by customers to react
to the environmental factors that may trigger sudden legitimate
changes in power consumption in houses. For example, in warmer
sunny days during winter season, it is expected that most houses
would reduce heaters within some time Ty, < [. Sufficient research
exists to show that using I = 24 hour window is reasonable [9].
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Therefore, T has a daily time granularity. For confirming the pres-
ence of falsification, we calculate a cumulative average of anomaly
detection metric over a ‘sliding time frame’ of F time windows.

4 ATTACK MODEL AND IMPLEMENTATION

In this section, we elaborate on four factors characterizing the ad-
versarial strategy, namely, fraction of compromised meters, attack
types, falsification margins, and falsification distributions that can
be employed by organized or isolated adversaries. To the best of
our knowledge, we have ensured that the numbers quantifying
the adversarial strategy do not favor or suit the proposed defense
mechanism. Since real malicious data samples are not available, we
generated the malicious samples by applying the following four as-
pects of adversarial strategy over the real dataset:

Fraction of Compromised Meters: Power consumption data

from smart meters can be sabotaged by an organized adversary or
isolated rogue customers [13]. Let organized adversaries compro-
mise M meters based on their attack budget and control a certain
fraction % = pmal € [0,1) of the N smart meters. For example,
Pmal = 0.50, means 50% of the total number of meters is compro-
mised. Note that p,,,; could be very high in decentralized micro-
grids, where N is typically smaller. Unlike most existing works,
we explore the full possible spectrum of p,,,; varying from 1%
to 90% for varying network sizes N, while studying performance.
Although the defense model is focused on an orchestrated attack
with larger p,,, 41, we show in Section 6, that our trust model is also
identifies small scale isolated attacks from lone ‘rogue meters’.

Attack Types: The organized adversaries falsify data from multi-
ple compromised meters simultaneously using one of falsification
attacks deductive, camouflage, additive, based on its objective and
intent. Falsification of data is achieved by accordingly changing the
actual power consumption value P;' by some amount §;. For exam-
ple, for deductive falsification, the actual power consumption data
P! from the i-th compromised meter at time ¢ is modified as P! - 5;.
Similarly, for additive falsification, the modified attack sample is
Pti + 8¢ from a compromised meter. For camouflage falsification,
half of the compromised meters launch additive falsification while
the other half launches deductive falsification with the same aver-
age value of §;. The §; amount of false data is chosen randomly
from within a margin (0min,max) according to some falsification
distribution with a strategic average falsification margin §g04-

Average Falsification Margin: We denote 404 as the average

margin of false data for each compromised meter. The strategic
value of 5404 by a rational adversary is some value that ensures
some minimum revenue but also prevents easy detection. Unlike
existing works, which either do not clearly articulate the exact
davg (such as [14]) or achieve good performance for high §4v4
values such as 1200W-1500W [11], 600-900W [1], 400W-430W [9],
we explore d40 ¢ values ranging from as low as 50W upto 2000W, to
show the classification performance over a broad range of possible
davg values. The micro-grid sizes of 200, 800 and 5000 are used to
show the scalability of performance error rates with relative sen-
sitivity to d404. We report improved performance on different pa-
rameters for 5504 > 350W that is compared to existing works, and
derive conclusions on d444 required to evade detection.

Falsification Distribution: Additionally, we argue that the distri-
bution of §; within (8min,dmax) should be some variant of uniform
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distribution such that the resultant shape of power consumption
distribution remains unchanged, making it a smarter and less ob-
vious attack. In contrast, the effect of normally distributed §; on
the resultant shape is quite apparent. A comparison between nor-
mally and uniformly distributed &; is shown in Figs. 4(a) and 4(b).
Note that, while our defense model works under both cases the re-
sults mostly consider variants of the uniformly distributed strategy.
Apart from this (a) Random strategy, the following falsification dis-
tributions are also possible: (b) Periodic: Targeting the dynamic
or time of use (TOU) electricity pricing [11], where attacks are
launched on specific times when the price/demand of electricity
is high. We implemented a periodic strategy where attacks hap-
pen on every 12 hours in a day,(c) Incremental: Instead of imme-
diately attacking with the intended 444, the adversary increases
its average falsification margins by a minuscule amount d§ on ev-
ery time slot till it reaches its intended §404. We implemented
an incremental strategy where d§ = 2W updated 4 hourly. (d)
Omission: No data reaches the utility since communication/data
is jammed/dropped. This is implemented by replacing data with
null values from a subset of meters.
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Figure 4: Attack Distribution (a) Obvious, (b) Smarter

5 PROPOSED FRAMEWORK

The proposed framework has two major parts: (a) Anomaly-driven
consensus correction model, and (b) Trust scoring model. The con-
sensus correction model provides robust consensus as inputs to the
proposed trust scoring model, which improves the classification.

5.1 Anomaly Driven Consensus Correction

The objective of the anomaly based consensus correction module
is to prevent the consensus measure (aggregate mean and standard
deviations) from getting too biased due to orchestrated attacks.
First, we show that the arithmetic mean is not a stable historical
invariant for aggregate power consumption. Therefore, historical
mean cannot be used as a consensus measure, and instantaneous
mean cannot be used since distinguishing legitimate changes in the
mean from malicious changes is difficult. The consensus correction
module has four phases: (i) proposed detection metric training, (ii)
inferring presence of organized falsification, (iii) detecting type of
falsification, and (iv) calculation of resilient consensus (resilient
mean and standard deviation (upsg and opqR) in a time window.

5.1.1 Ratio of Harmonic to Arithmetic Mean. Now, we
show that the ratio of harmonic to arithmetic mean metric is bet-
ter than other consensus/aggregate based measures for anomaly
detection and consensus correction due to: (i) Higher invariance
to legitimate changes in consumption, (ii) Pythagorean mean spe-
cial asymmetry property facilitates attack detection.
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Letp™™* = {p},--- ,pV} denote the power consumption data se-
ries on an power transformed scale gathered from N smart meters
at any time slot ¢ (¢ is slotted hourly). The harmonic mean (HM;)
and arithmetic mean (AM;) of aggregate power consumption in a
time slot is defined as:

N
- PINEY-H
N 1 -
Zis 5 N

HM; =

All HM; and AM; over the time window T are recorded, such
that the corresponding daily averages are given by HMgy4(T) =

2%11 HMt)/24 and AMgo4(T) = (2%4:1 AMt)/24 over this win-

dow T (T is a daily window consisting of 24 time slots). Similarly,
let the average daily standard deviation be denoted as SDg44(T) =

(Z?il 0;)/24. Many prior works such as [14, 22, 24], propose the

use of arithmetic mean or its derived smoothening statistics (such
as Cumulative Sum/Moving Averages of AMg,4(T)) for sequential
anomaly detection. Thereafter, they propose to use historical mean
as a consensus in the event of an attack or the mean prior to the
attack detection. However, Fig. 5(a) shows how actual arithmetic
mean power consumption fluctuates for the same time windows
for three years [25] in the Texas dataset without showing any re-
peating historical pattern or a stable time series. Due to high fluc-
tuations of the instantaneous arithmetic mean, the error residual
between the derived smoothening statistic and the actual mean is
large. Thus, it will be difficult to identify legitimate changes from a
malicious one by monitoring the time series. It will also cause large
errors if historical arithmetic mean is used as a consensus. This is
evident from the high rates of false alarms and missed detection
reported in [7, 9]. To circumvent this problem, we propose to use
the ratio of HMgy4(T) and AMg44(T) as the detection metric by:

_ HMaog(T)

" AMaog(T) ®)

QLave(T)
We dengte Hratio and orgrio as the mean and standard deviation
of QZ%;“’(T) observed in the dataset. Let us explain three reasons
for choosing Eqn. 3, as a metric for detecting presence of attacks.
(i) High Invariance to Legitimate changes: From our experi-

mental study, we observed that the time series of Q;?,tgio(T) sam-

ples over different years and across multiple datasets is highly sta-
ble over time in contrast to the time series of arithmetic mean

of power consumption. Fig. 5(b), shows the daily Q;Ztgi"(T) over

three different years (2014, 2015, 2016) for the Texas dataset, while

Fig. 6(a) shows the ratio Qgﬁtgio(T) for six different meter popu-

lations for a completely different AMI data set in Dublin, Ireland
during 2009-2010. Both, Figs. 5(b) and 6(a), prove that ng;io(T) is
a highly stable invariant metric across different data sets, as com-
pared to the aggregate arithmetic means. Note that, QS%? %(T) can-
not exceed 1, due to the HM < AM property [18].

Apart from the stability over time, nggio(T) also exhibits his-
torical stability over different years, unlike arithmetic mean which
shows large differences in the readings on the same day in succes-

sive years. In fact, without using moving averages, the standard de-
ratio

viation of the ratio samples oy4tio of Qavg (T) is 0.017 and 0.012
for the Texas and Irish datasets respectively. Using a smoothening
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moving average will further lower the standard deviation and pro-
duce a more stable invariant under normal conditions.
Additionally, higher the variance in the power consumption
dataset, the lesser is the mean of ratio sample distribution and vice-
versa. Hence, we conclude that the Q;?);i"(T) is a more robust
metric for anomaly detection than other typical measures such
as mean, mode, median due to its high invariance to legitimate

changes in data over successive days across years.

——Mean (2014) 0.95

Ratio

—2016
0.75 ---2015
- - 2014

50 100 150 200 250 300 350
Days

(b)
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Figure 6: (a) ngtgi"(T) of Irish Dataset, (b) Ratio Distribution
(ii) Special asymmetry property of Pythagorean Means:

Asymmetric growth (or decay) rates of harmonic mean compared
to the symmetric growth (or decay) of arithmetic mean under
various attacks, is another reason which helps to infer the pres-
ence and type of falsification precisely, quickly, and with high
sensitivity. With this attack context information, it is possible
to estimate the true consensus accurately. When a subset of p!
values in p™* are increased/decreased (with a false bias §), the
AM value grows or decays linearly. On the contrary, the behavior
of HM is inherently different and can be summarized as follows:
Property (1) : We observe that HM grows slower and decays faster
than corresponding AM, when sub-portions of a data set gen-
erated from multiple sources experience additive and deductive
manipulation, respectively.

Property (2) : Growth and decay rates of HM under the same ¢
is unequal when used for additive and deductive attacks, unlike
AM which show equal rates. In HM, decay rate is larger than its
growth rate induced by the same §.

Property (3) : We observed that growth and decay rates of HM
compared to AM and the effects on the proposed ratio metric also
depend on (a) whether the datapoint being biased are on the lesser
(left) or greater (right) than the actual arithmetic mean, and (b)
the magnitude of §.

The above properties can be mathematically illustrated by the
following: Consider a sorted series with two numbers U = (ug,u2)
such that its mean and standard deviation is (AM, ¢). In Fig. 7, the
x-axis represents the variable u;. Let us fix the uy as constant such
that uy = {2} is a singleton set, while u; is a set such that u; € R*.
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Figure 7: Growth Decay Rates of HM and AM

Hence, the cartesian product of u; and uy is the set U = uq Xua,
whose elements are a two tuple dataset. In Fig. 7, let the y-axis
represent the value of AM(uj,uz) or HM(uj,uz) for every possi-
ble element in the set U. Given any element say U = (1,2), visu-
alize increasing/decreasing value of u; as mimicking additive or
deductive biases to U = (1,2), that changes both the AM(uz,u2)
or HM(u1,uz). In Fig. 7, AM function of (u1,2) V ul € (0,00]
(represented by the solid blue line) shows a linear growth with in-
creasing u1, and is neither strictly concave or convex. On the other
hand, the HM function of (u1,2) VY wuj € (0,00] (represented by
a dashed red line) is a strictly Schur-Concave Function [32]. This
difference in concavity is the theoretical basis that trigger changes
in the proposed ratio metric under various attack types and is il-
lustrated below using the same example.

Ilustration of Properties: For dataset U = (1,2), let the AM =
1.5 and HM = 1.33 be represented by points A and H as marked in
Fig. 7. Hence, their ratio value say Q"%*® = g—ﬁ =0.88.

Suppose in U = (1,2), u; = 1is biased with deduction of § = 0.3,
such that U~ = (0.7,2). Points a~ = 1.35 and h~ = 1.037 corre-
spond to the biased arithmetic and harmonic means respectively.
Thus, decay in HM and AM are AHM~ = h™ — H = —0.293
and AAM~ = a~ — A = —0.15. Ignoring the signs which sig-
nify decay, |[AHM™| > |AAM™|, proving that HM decays faster
than AM. Note that the biased ratio of HM to AM in this case
is 07 = 0.76 < QU%i° = (.88. Suppose, the same § = 0.3
is instead added to u;. However, with § = 0.3, added to uq, the
0% =0.95 > 0.88 = Q"% Since [0.76 — 0.88] > [0.95 — 0.88], it
proves Property 2. While, we may be temped to believe that addi-
tive attacks increase ratio while deductive attacks decrease them,
this is not true. Consider an additive bias value of § = 3.5 instead,
that is added to data-point u; = 1. The resultant ratio in this case is
Q% = 0.82, which is a decrease from the original ratio 0.88. There-
fore, the fact that magnitude of 8, plays a role in the observed rise
or drop in the ratio is established. Finally, suppose the § = 0.3 were
added to uy instead of uj. Note that in U = (1,2), the data-point
up = 2, is on the greater than (right side) of the true mean of U
(= 1.5). Now the Q" = 0.80 < Q"4/i° = (.88. This proves that posi-
tion of the data-point being biased by an §, w.r.t to true AM also plays
a role in the ratio change. The above clearly explains property 1,2
and 3. The necessary and sufficient conditions of §44, for observ-
ing a drop or rise in ratio metric under each attack type and the
effect of biased datapoint’s position relative to the true mean is de-
tailed in Appendix A. The basic conclusion from the illustration in
Appendix A, is that the ratio metric decreases only when the biased
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datapoints move original datapoints away from the true arithmetic
mean in a way that flattens the shape of the distribution (increas-
ing the sample standard deviation), while, rise in ratio occurs if the
biased datapoints move original datapoints closer to the true mean
(increasing the sample standard deviation).

(iii) Effect of Attacks on the Ratio Metric : Since we know that
datapoints regardless of meter ids are more frequently on the lesser
than of the mean (as shown in Section 3.2), it is a natural conse-
quence that the more attacked data-points, will also be lesser than
the true mean, regardless the attack type. Given this, a deductive
attack, will cause more datapoints to move further away from the
true mean. Therefore, we can conclude that the ratio is going to de-
crease for deductive attacks, regardless the §444. For camouflage
attacks, also since the HM has a higher decay rate than growth rate
of AM for the same & bias, the ratio is bound to decrease regard-
less the §404. In contrast, the additive attacks with lower margins
of false data will cause the final biased datapoints to be proximate
to the true mean, thus reducing the sample standard deviation, and
therefore increasing the ratio metric. However, for higher margins
of 604, the biased datapoints will end up being greater than true
mean, and the ratio will show a decrease.

Above conclusions on increase and decrease of ratios have been
experimentally verified in Fig 8, where p,,,,; = 40% was used for
different attacks with varying d404. The deductive and camouflage
attacks correspond to a 6509 = 600W. The additive small and ad-
ditive large denote the ratio lines under an attack of 5404 = 200W
and 8404 = 800 respectively. The exceptions to the above observa-
tions may happen, if the attacker possess complete knowledge of
system, defense mechanism and insider leaks; the details of which
is discussed in Sec. 5.2.4.
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Figure 8: QZZ;jO(F ) under various attacks

5.1.2 Inferring presence of Organized Falsification: We
know that asymmetric growth and decay rates of the HMgo4(T)
and AMg44(T) trigger a decrease or an increase in the Q{l‘f,tgi"(T),
as false data is injected from a subset of numbers generating these
means. Leveraging this knowledge, we propose the unsupervised
and semi-supervised versions of the detection criterion that indi-
cates the presence of an organized falsification, and thereby the
need to invoke a suitable type of consensus correction.

A sustained drop or rise in ratio indicates malicious activity.
Therefore, we need a collective anomaly detection (monitoring a
subsequence of states) instead of point anomalies (monitoring each
state independently). To capture collective anomalies, we define a
sliding frame that contains the cumulative average of QZ%’;"(T)
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samples over the last F days. If the cumulative average in the cur-
rent frame F has deviated from the cumulative average in the pre-
vious frame F — 1 by a threshold ¢, then this forms a premise for
a sustained change in the ratio metric. Formally, the unsupervised

detection criterion is:
€ nggio(F —1)+e No Anomaly;
< QZZ?"(F —1) —e Orchestrated Attack;  (4)

> Qralio(F _ 1) + ¢ Low Additive Attack;

avg

Qhby(F) :

where € is a threshold parameter such that € € (0,30,4¢i0]. The
choice of e controls whether the consensus correction step will be
invoked or not. The appropriate € can be learned by studying the
trade-off between € and classification error rate, over various dgog
and p,,,,; combinations as shown later in Figs. 11(a) and 11(b). Note
that, the required sensitivity of € to attacks need not to be very
precise, since the purpose of Eqn. 4 is to only catch evidence of
orchestrated attacks, that disturb the consensus significantly and
therefore need the consensus correction. In contrast, isolated or
smaller scale attacks (with low 840g/pmq1) do not drastically devi-
ate the ratio metric and thus may not get detected under the given
€. However, at the same time such small scale attacks will also not
affect the consensus in a way that causes large classification errors.

Therefore, observing QZZ’; (F) over time is enough to conclude

whether an orchestrated falsification is happening. If QZ%ZiO(F)
has decreased (or increased) more than €, than the previous frame
QZ%’;"(F — 1), it is an evidence of the start of an orchestrated fal-
sification. Let this frame be marked as Ftrigs such that Firig—1is
the last frame with a normal ratio value.

Now, after a period of sustained drop (or rise) in the ratio metric
outside the €, an increasing (or decreasing) ng;i 9(F) may indicate
that attacks are now ceasing. As seen in Fig. 8, the ratio increases
(decreases) back to the normal range Q’“”O(Ftrl-g —1)+e value on
the 72nd day, when our implemented attack was stopped on the
68-th day. Note that, isolated attacks from individual customers,
may not have a drastic effect on the ratio margin (+e€), and these
attacks are countered by the trust model discussed later. This is a
very simple but very powerful technique to differentiate between
legitimate changes due to environment and false data injections.

Semi-Supervised Version of Detection Criterion: One disadvantage

of the unsupervised detection criterion (Eqn. 4), is that it may miss
incremental attacks where 8404 slowly increases over time, such
that the drop of ratio compared to the previous time window will
be within the e. However, if enough historical (attack free) data
is available (e.g. the Texas Dataset), the historical normal range
ngtgio(F hist) 4 ¢ of the ratio can be learned easily given its stable
nature. In such as case, even with incremental attacks, the ratio
metric will eventually cross the learned stable historical range.

5.1.3 Inferring Type of Data Falsification: Once falsifica-
tion is inferred at F;;4, observing the direction of HMgy4(T) and
AMgog(T) growth or decay, indicates the type of data falsification:
additive, deductive, camouflage. For notational simplicity, hence-
forth we will refer to HMy04(T) and AMgy4(T) as HM and AM
respectively. The resilient mean ( p13(g(T) ) and standard deviation
(omRr(T) ) for window T, is referred as pprr and opqg respectively.

If both HM and AM values have increased compared to Fyrig,
then it is an additive attack. In deductive attack, both HM and AM
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decreases from the Fyy ;4. In camouflage, the AM does not change
much and HM decreases. The various possibilities are depicted in
Table 1. A pictorial view of this is shown later in Fig. 12 and Fig. 13.

5.1.4 Consensus Correction: We calculate the resilient
mean at each window T (up(R), as an estimation of the actual mean,
given the information on presence and the type of attack. We ex-
ploit the robustness of HM and AM, under different attack types
for estimation of the actual mean.

Table 1: Inferring Attack Types

Ratio HM,AM Inference HMR
Down Up,Up Additive HM-(AM-HM)
Down | Down,Down Deductive | AM+(AM-HM)
Down | Down,Similar | Camouflage HM
Similar Up,Up Legit Up AM
Similar | Down,Down | Legit Down AM

Mean Correction: The choice of up g is guided by how the de-
tected attack type biases the actual values of HM and AM. For ad-
ditive attacks, the growth in HM is less than AM due to slower
growth rate although both increases from actual AM. Hence, we
deduct corrective factor (AM — HM) from the observed HM to es-
timate the ppr. For deductive attacks, HM has a faster decay rate
than AM. Since, HM < AM, for deductive attacks, HM is even
lesser than the reduced AM. Hence, we add to the observed AM,
the corrective factor (AM — HM), to estimate the ppr such that
UMR = AM + (AM — HM) is closer to the actual mean and far from
deductive outliers at the same time. We choose to add (AM — HM)
to the AM because of larger HM drop for deductive attacks can
cause (AM — HM) value to be very high (when p,,,; and/or 8404
is high). Adding it to HM may be far less than the true mean. Hence,
adding it to AM makes ppsg closer to the actual AM.

For camouflage attacks, HM works as a good measure of upg
due to its stability to partial presence of false additive data. In fact,
using the HM for camouflage helps distinguish meters launching
additive falsification from meters launching deductive falsification,
because HM is not symmetrically distant from the additive and de-
ductive outliers, unlike AM. The deductive meters will have trust
values lesser than honest meters but higher trust than additive me-
ters. This is because HM will be closest to the data generated from
honest meters followed by deductive and furthest from data gen-
erated from additive meters. Alternatively, if the separate identi-
fication of additive and deductive outlier meters are not desired
AM may be used for pprg. In general, AM is more robust mean for
camouflage attacks, when p,,,; for camouflage attack is > 50%.
The extent of drop in the QZ%gO(T) is an indication of p,,,; and
davg- The larger the drop in QZ?f;"(T) larger is the p,,, 4 and davyg
and larger the bias in the observed mean. In case, no organized at-
tack is detected from anomaly detection phase, (g is equal to the
observed AM. Table 1, summarizes the calculation of yjsg.

Standard Deviation Correction: The opr will increase regardless
the type of data falsification attack (except for low additive attacks).
Therefore, a directional correction is not possible like ppg based
on the attack types. Using the measured opg of the last time win-
dow, before detection of orchestrated attack, may not be wise since
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there may be a longer delay between the launch and the actual de-
tection of the falsification (such as in incremental attacks). Alterna-
tively, one may be tempted to use the historical value of SD g4 (T)
on the corresponding T-th day in the previous years. However, this
would add to the storage complexity. Moreover standard deviation
on the same days on successive years are not necessarily same. We
studied the distribution of SD 4,4 (T) over the years and found that
a distinct mode of SDg44(T) distribution occurs at 425 — 475W
range in the non-transformed scale. The probability of SD g4 (T)
being around 425 — 475W is very high over 50% while all other
ranges are less than 10%. As an approximation, we choose opg as
In(450), whenever orchestrated attacks have been confirmed for us-
ing it in the subsequent trust model. The distribution of SD g4 (T)
is shown in Appendix B.

5.2 Consensus Aware Trust Scoring Model

The trust scoring model has three parts: discrete rating criterion,
Folded Gaussian distribution based weights, inverse power law ker-
nel based trust metric.

The discrete rating criterion assigns a rating level to each me-
ter i, by comparing proximity of its reported data p;' with the re-
silient mean consensus g, over a time window of length T. Then,
weights are assinged to these discrete rating levels according to
both prior frequency of occurrence, density of each rating level in
a Folded Gaussian distribution, and their proximity to ppg. This
step finally yields an aggregate weight R’ for each i. Then, an in-
verse power law kernel is used to map the R’ weights into a trust
value TR’ between 0 and 1, for linearly separable classification of
compromised meters from honest meters.

5.2.1 Discrete Rating Levels: . We propose a criterion to assign

a discrete rating level to the reported pi based on its proximity to
MR- The opg is the corrected standard deviation of all pg from
the calculated ppg in the window T. We define A, = oag. The
absolute difference between the p;' for any meter i and the ppR is
denoted by iniff = |p§ — pmR|- Given this, the discretized rating
levels denoted by [ is given by Table 2, using the 68 — 95 —99.7 rule
for Gaussian distributions to assign pi as belonging to one of the
4 possible rating levels (bins) according to proximity to the upsg.
The highest rating 4 is closest in terms of proximity to ppsg, and
similarly lower ratings are obtained if the meter’s data is further
from the pprgr. Over a time window of say T hours, the ratings
on each time slot ¢ for meter i is collected to form a rating vector

sequence r’, which is sorted as r!

sort =10 =11 <+ < rp_g.

Table 2: up g based Discrete Rating Levels

Scenario Discrete Rating Level(/)
1
®diff AS Agps 4
Agps < ®ldiff < 2Agps 3
20 gps < ®(liiff < 3Aaps 2
otherwise 1

5.2.2 Folded Gaussian based Weights: . Now we find the corre-
sponding (normalized) weights of each rating in the r; or¢ Which
is denoted as W! = wy,--- ,wr_;. Figs. 9(a) and 9(b), signify the
approximate Gaussian nature of the rating distributions, under no
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attacks for two real meters from Texas dataset. It is clear that the
most common and highest rating level is 4 followed by all oth-
ers. This gaussian nature is known as Folded Gaussian where vari-
ables around the mean do not have different signs, since only the
magnitude of the level is important. Intuitively, meters with more
observed lower ratings should have lesser weights. The sorting
makes it easier to give lower weights to smaller ratings through
Eqn. (5) by dividing the rating space over the considered time win-
dow. Then via Eqn. 6, the distance between this weight x; from the
highest rating level (which is 4 known from no attacks) is deter-
mined. If the distance is larger, it assigns a non-linearly decreasing
density value based on the shape of Gaussian distribution.

Additionally, higher percentage of lower ratings in a window,
will give even lesser weights to those smaller ratings, than a sce-
nario with lower percentage of low level ratings and vice versa
achieved through Eqn. (6). We denote g = 4 as the best or high-
est possible rating level, U‘;r denote the standard deviation of dis-
crete ratings of each meter from pgr = 4 in a window length T.
The aér for each meter will be different based on different obser-
vations compared to common mixture data, which captures certain
individual differences in consumption. First, a weight parameter x;
distributed between 1 to 4 is calculated as:

x,:1+u vV ot=0,---,T-1 (5)
(T-1)

where K = 4, is the total number of discrete rating levels in the
system, T is the window size. Therefore, the corresponding raw
weight cw; of the rating at time index ¢ is:
_ (Xru_BR)Z

LR ©

i_
cw; = (fér—\/ﬂe
The weights yielded from Eqn. (6), are normalized by wf =
%ﬁwf Let I(l,t) be an indicator function which indicates
whether a particular rating level I occurs in that time slot. All

weights corresponding to each unique rating level [, such | =
{1,--- ,4} within T is added up, such that WD(l) = Z[TZ_OI wel(l,t).

1, If [ occurred in time slot ¢
0, Otherwise

where, I(l,t) = { (7)

For example, sum of weights in W corresponding to each occur-
rence of rating level 2 is denoted by WD(2). The aggregate weight
rating R' of the i-th meter is a continuous value between 1 and 4

and is given by:

K
Ri = Z IxWD(l), R'e{1,4) ®)
=1
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5.2.3 Inverse Power Law based Trust Value: . We know that the
@éh. fF is an unsigned value which can be visualized as a folded
Gaussian distribution, where ratings 3,2,1 regardless of whether
they are on the right or left of the rating level 4 are treated as
the same random variable. Therefore, the aggregate weight (R?),
when interpreted as a trust score must also follow a folded gauss-
ian shape, meaning R’ = 4 represents the greatest trustworthiness
followed by a exponential ‘discounting’ of trust, as R’ decreases.
For this, we propose the inverse power law inspired kernel trick to
transform the R! into a final trust value, TRi, between 0 and 1, by:
1
S ®)7
where 7 is a scaling factor controlling the rate of discounting. The
Eqn. (9), gives exponentially less trust to R’ as it decreases from the
maximum value of 4, in adherence to the Folded Gaussian shape
of the rating distribution of legitimate meters (shown in Figs. 10(a)
and 10(b)). The scaling factor 1 depends on the skewness of folded
gaussian in the benign data set. The Eqn. (9) produces trust val-
ues such that compromised and non-compromised meters have lin-
early separable, which enables to calculate an unsupervised thresh-
old for classification. The trust maintenance over time uses a for-
getting average [4] for periodic attacks.
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Figure 10: (a) Folded Gaussian (b) Inverse Power Law Kernel

5.24  Under Advanced Persistent Threats: . For advanced per-
sistent adversaries, possessing full knowledge of our defense mech-
anism is ‘not’ enough to escape detection completely. The adver-
sary has to ensure that deviation in the ratio metric never exceeds €
on every time window. To completely escape detection, it is manda-
tory for adversary to possess four additional knowledge: (i) Closed
Form Expressions of Harmonic Means (ii) Exact (non-attacked)
harmonic and arithmetic mean on each time slot (iii) € value (iv)
skewness of data distribution. The skewness knowledge is public
(right skewed) and has no attack cost. Different microgrids will
have completely different € values, hence the attacker needs to
know e of each micro-grid. The € value may be leaked by com-
promising an utility insider for each micro-grid, or the database
storing all the e values. Both possibilities increase the attack cost.
Assuming, that attacker knows the ¢, it further needs the exact
knowledge of HM and AM in each time slot. This is rather implau-
sible for adversary to know at runtime, unless it compromises 100%
of the meters. This is because the means do not have any stable
historical trend or time series, so attacker cannot reliably predict
them. Unless actual HM and AM is known, one cannot ensure that
the resultant QZ?,;iO(F ) from the attack will have a ratio deviation
that is lesser than the e. Most importantly, the exact closed form ex-
pressions of harmonic means do not exist, and is an open problem
in real analysis. Several approximations exist [18], but note that
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it does guarentee success everytime and the defender needs suc-
cess only once to raise an alarm. Even if the attacker knew every-
thing somehow, we show that the signatures are visually evident
for 8404 values as low as 50W (see Appendix C).

The sensitivity to successful identification of compromised me-
ters is different from sensitivity to successful detection of presence
of orchestrated attacks. Given our model, we report that if that
attacker’s 8409 < 300W, the missed detection rate drastically in-
creases to 52%, since such §gy4 is much less than standard devi-
ation which ends of with higher rating levels. For the attacker to
keep atleast 50% of its compromised meters undetected, the high-
est possible 5509 = 300W when p,,,; = 40%. However, at such
low 6404, the impact per unit time is less (see Appendix D).

6 EXPERIMENTAL RESULTS

Data sets from 200, 700, and 5000 houses, were obtained
from PeCanStreet Project [25] and Irish Social Science Data
Archives [26], containing hourly power consumption data from
Texas, Austin and Dublin, Ireland respectively. The different micro-
grid sizes mimic decentralized and centralized deployments of de-
fense frameworks. We studied results of anomaly detection and
trust model for all types of data falsification. Additionally, we stud-
ied the performance scalability of Irish data for 5000 houses. For
anomaly detection results, a period of no attacks is followed by a
period of attacks. Deductive attack results have lesser 6444 than
the others, since realistic values of power consumption are lower
bounded by zero. For clarity of representation, we show anom-
aly detection results using cumulative moving averages over time
frame (F) of length 7 days. Additionally, for easy depiction of me-
ter classification results, all the compromised meters are assigned
lower meter id than the honest ones. Finally, we show performance
over all values of p,,,; and §404 and compare with existing work.

Error rate
Error Rate
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Figure 11: Error Rates: (a) p,,q1 = 40% (b) prpar = 10%

6.1 Choice of € for consensus correction

The choice of € decides, whether the anomaly detection raises an
alarm or not, which in turns decides whether or not the consensus
correction is invoked that subsequently affects classification error
rates. In the real-world, the drop/change in the ratio depends on
the attacker’s pp,,; and 8404 values which is always unavailable
to the defense framework at run-time. To provide a suitable recom-
mendation on the desired €, we performed some experiments for
an appropriate recommended value of €.

It is important to understand that, smaller p,,,; and 8404 pairs
will cause smaller drop/change in the ratios and therefore, € will
need to be small to capture them. However, this aspect is offset by
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the fact that they also do not affect the consensus in a drastic way.
In that case, an unwarranted consensus correction will cause the
classification errors to increase. As a proof, it can be observed from
Fig. 11(a) and 11(b), error rates are higher for very low values of
€. On the flip side, if the € is too large, it will fail to raise alarm
for many possible p,,; and §qv4 pairs. Therefore, the consensus
correction will not be invoked, the trust scoring model will be ex-
ecuted with a biased consensus increasing the classification error
rates. Again this could be verified from Fig. 11(a) and 11(b), where
we see the error rates are very high when € ~ 30y4:i0. Naturally,
there will be an intermediate optimal region of €, where the error
rates will be minimized. From computational study, we observed
that regardless the wide variation of §444 (from 350W to 1400W),
the error rate minima is achieved at € = [1.50,g¢i0,20ratio] of the
ratio sample distribution, at p,,,; = 10%,p,,41 = 40% respectively.
Therefore, although p,,,4; and 64,4 may not be known apriori, the
recommended e value could be learned a priori, by the above man-
ner. Following this, we have used € = 20y4+0, for all performance
results, even for results parameterizing different p,,, ;.

6.2 Inferring Presence and Type of Falsification

Figure 12(a), shows the directional changes in HM and AM and
ratio drop to distinguish between legitimate changes and mali-
cious attacks. In the first 57 days, HM and AM changed but
their growth/decay had a symmetry, indicating legitimate changes
in consumption through same QZ;‘f;"(F) ~ 0.92 value. How-
ever, when additive attack phase was launched at 58th day, the
QZ%’;"(F ) started to decrease from within 2 days of attack, due to
slower increase of HM compared to AM. The directional change
of both HM and AM values from F;jg (arrow upwards) indicate
the additive nature of attack. The inference of attack and its type
is quick. The Fig. 12(b) and Fig. 13(a), show real time anomaly de-
tection for deductive and camouflage attacks respectively.
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6.3 Robustness of Anomaly Detection over p,,,;

QZZ';O(F ) based detection is robust across larger fractions of com-
promised meters. Fig. 13(b), show that the drop in the Q"*/1°(F)
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is larger than the chosen € (i.e. Q"%/°(F) is decreased for p,,,; <
85% values compared to the ratio when p,,,,; is 0%). This is the rea-
son for successful anomaly detection to higher fractions of compro-
mised meters. We also observe, that the minimum ratio is achieved
when p,,41 ~ 50%, for additive and deductive attacks. However,
for camouflage attacks, the ratio always decreases with increasing
Pmal> since the deductive portion of the camouflage attack only af-
fects the Harmonic Mean while keeping the AM same. Hence, the
resultant ratio decreases regardless the p,, ;-
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6.4 Compromised Meter Classification

Fig. 14(a) and Fig. 14(b), show the performance in terms of steady
state trust values, under additive and deductive falsification when
50% meters are compromised for 8504 = 900 and 8409 = 760 for a
small subset of 200 houses from Texas dataset. It is clear that com-
promised meter’s trust values, marked in red (asterisk) are signif-
icantly less than non-compromised smart meters marked in blue
(circles), such that they are linearly separable through a thresh-
old. The threshold is obtained through a standard K-means unsu-
pervised learning classifier. Similarly, Fig. 15(a) shows the steady
state trust distribution under camouflage attacks with p,,,,; = 50%,
where additive and deductive meters are marked in green and red
while non-compromised are marked in blue. Fig. 15(b) confirms
the scalability results for 700 houses in Texas dataset under an ad-
ditive attack. Note that, the false alarm (FA) rate scale well with 3%
and 2.8% for 200 and 700 houses given same 404 as evident from
Fig 14(a) and Fig. 15(b).
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To prove that our work is valid, scalable and robust across dif-
ferent data sets, we show the performance of steady state trust
values using a bigger subset of the Irish dataset with 1000 houses
for deductive attacks with lower margins of false data. Figs. 16(a)
and 16(b), shows trust value distribution and classification perfor-
mance for 8409 = 500 and §q0g = 600. We see that even for a large
and different region, with lower 8404 than Texas data, the false
alarm and missed detection rates are 9% and 8%. A performance
accuracy for 5000 houses over all 3409 and pp,,; values and our
comparison with existing works is shown later in Sec. 6.9.

0.9

1 TR AL o r g e e

® 08
2
5 . g°
? -+- Attacked Meters S Isolated Malicious
S 06 1% —Honest Meters >
Z i s o Meters Detected
[ Threshold [ g -
$° ' =
g H L
> [N 071 %
< 1
03
20 40 %o 80 100 120 0 5 10 15 20
Days Meter ID

() ®)
Figure 17: (a) Fast Time to Classification (b) Isolated Attacks

6.5 Time to Detection of Compromised Meters

One key advantage of our work is that it allows for quick identifi-
cation of compromised meters compared to most accurate classifi-
cation based methods [8, 9]. Fig. 17(a), shows that difference in the
evolution of trust values after the attack is launched. Since, it is not
legible to show every single meter in one plot, we plot the average
trust of the compromised set and the average trust of the honest
set over time. Fig. 17(a) shows that the average trust of compro-
mised set of meters falls below the threshold within 10 days from
the start of attack. Therefore steady state as described in Figs. 14(a)
and 14(b) is achieved within 10 days on average. Hence, rogue me-
ters are identified before drastic damages have been inflicted.

6.6 Classification against Isolated Attacks

Although, our work is focussed on defending against orchestrated
attacks, with large number of compromised meters, our work is
still valid in identifying isolated malicious meters that may act
alone. In such isolated attacks, the ratio drop may not be observ-
ably significant unless d404 is abnormally high. However, this is
not necessary as such isolated attacks in such cases would not dras-
tically affect the means and get revealed through the discrete rating
criterion and the proposed trust model. As an evidence, the trust of
two isolated meters launching additive and deductive attacks with
davg = 600, (shown in Fig. 17(b)), is far less than other honest me-
ters. Hence, this is a proof of validity for isolated attacks. Hence
our defense model is sensitive to small scale low p,,,; attacks.

6.7 Classification against Omission and
Incremental Attacks

Fig. 18(a), shows the evidence that the proposed model can de-
tect omission attacks, where 30% of the meters dropped the data.
Fig. 18(b), is the performance against incremental attacks after 45
days of the initial attack was launched. The amount of false data
was incremented by 2W per meter every 4 hours.
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6.8 Avg. Performance over p,,,; and 6404

One benefit of our work is the robustness to higher fractions of
compromised meters compared to most consensus based methods
that fail when p,;, 5; and/or the 5404 is high. Fig. 19(a) and Fig. 19(b),
shows the average trust values of all compromised meters versus
honest ones. Our technique completely fails at 75% percentage
of compromised meters for a 200 house Texas dataset, which is
resilient. Similarly, Fig. 20(a), shows the average trust difference
among compromised and honest sets of meters over various 3404
under additive attacks, when p,,,; = 50%. Fig. 20(b), shows the
performance of our model, when compromised meters alternate
true and false behavior periods based on pricing. We can observe,
that although the difference between trusts are lesser than earlier
case, we can still classify the compromised ones.
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6.9 Performance Accuracy & Comparison with
Existing Works

Fig. 21(a), shows our classification error rate over different 64,4 for
all 5000 houses in Irish dataset with p,,,,; = 40%. To understand
how it compares with existing works, Table 3 describes perfor-
mance of other works in terms of various parameters such as False
alarms(FA), Missed Detection(MD), learning type (S=supervised,
SU=semi-supervised), and time to detection. Apart from this, we
also qualitatively compare the level of privacy intrusion and com-
plexity compared to other schemes.

Fig. 21(a) shows that the worst case false alarm (FA) and missed
detection (MD) rate for §g0g = 350W is 18% and 9%. At 60 = 400
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Figure 21: Classification Performance with Scalability (a) All
5000 houses over 3,,4 (b) 200 houses over p,,;

(used in [9] over the same dataset,did not report p,,,;), our work
with FA = 13.8% and MD = 9.3% outperforms [9] at a high p,,,4;
value. At §g09 = 600W, we have FA = 6% and MD = 5% out-
performing [1] that reported FA=9% and MD=8% but over a much
smaller set of 200 houses without scalability evidence and higher
davg of 700W-800W that favors good performance. False alarms
increase with decreasing §414 and below 400 it increases more, be-
cause the standard deviation of the dataset usually range around
400W. To our best knowledge, only [19] using a synthetic data re-
ported lesser error rates than us. But this happens only if number
of users are less than, 25 making this comparison unfair and there-
fore not scalable. Apart from this, [11] reports detection of around
90%, but for 844 as high as 1200W to 1800W, which will facilitate
easy detection in our case anyway.

Fig. 21(b), shows our classification error rate over different p,, ,;
values for a smaller dataset of 200 houses in Texas. It can be seen
that missed detection and false alarm rates are less than 2% and 5%,
upto par = 0.60. Above pp,q1 > 65%, the performance degrades,
but missed detection rates are still lower at 13% and 25%, where
other works fail completely. A smaller population is chosen since
realistic attack budgets may become a significant p,,,; percentage
for the smaller micro-grids sizes, making such a study practical.

Table 3: Comparison with Existing Work

Parameter Proposed | CPBETD [9] | ARMA [14] | Entropy [1]
FA 13% 29% 33% 11%
MD 9% 24% 28% 8%
Savg 400W 400W NA 800W
Pmal > 40%+ NA NA < 40%
Size 5000 5000 200 200
Learning SU S S N
Detection Time < 10 days 1yr 1 mo 1 mo

7 CONCLUSION AND FUTURE WORK

We conclude that Harmonic to Arithmetic Mean ratios is an ef-
fective light weight indicator of organized falsification over differ-
ent types of falsification attack and robust under higher fractions
of compromised meters while distinguishing legitimate changes
in the data to malicious ones and helps in consensus correction.
A semi-supervised folded gaussian trust model produces trust val-
ues, which identifies meters launching both organized or isolated
attacks within a few days of attack, while preserving lower missed
detections and false alarms rates, even when percentage of compro-
mised meters are significantly higher. We showed that the method
is generic and applicable across different real smart meter datasets.
In future, we will extend our work to attacks where 6404 < 350
which may be realistic for advanced, persistent and long term ad-
versaries who sacrifice immediate benefit for long term gains. We

Bhattacharjee et al.

will discuss the theoretical details of the Pythagorean means for
very low 8409 < 350 in the future work.
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Appendix

A NECESSARY AND SUFFICIENT
CONDITIONS FOR RATIO DROP AND RISE

In this section, we provide a detailed explanation of the neces-
sary and sufficient conditions for 6404 in terms of p,q; = M/N,
the mean p and standard deviation o of the power consumption
dataset. Each occurrence of ratio rise or drop given an attack type,
has an upper bound and lower bound on the value of § that is
dependent on the position of bias as well. For example, k™ (rlow),
denotes the lower bound for a deductive attack on the datapoints
on the right side of the actual mean, and so on. The average case
approximate lower bounds are: k™ (rlow) = k* (llow) =

ko &y 0 [NAT

M VMV N-1

where + and — denote additive and deductive attacks and [ and r
denote whether the position of biased data-points are on the left or
right side of the true mean. The average case approximate upper
bounds are: k* (lhigh) = k™ (rhigh) =

o (10)

220 o [N-M
M YyM Y N-1

The average conditions for deductive attacks on data-points the
left and additive attacks on datapoints on right side of the true

khigh = max(c +20) (11)

mean is:
P PR N

k™ (lhigh) = k™ (rhigh) = o N1 (12)
The worst case happens when additive attack changes only the
minimum value (say x;) of the dataseries, and deductive attack
changes only the maximum value of the dataseries. The worst case
expressions have little practical significance, but could be for pur-
pose of verification. The worst case expressions for k4., and kp;gp

are:

Kiow > ((lxi = pl + 0 [ 25) + )} — x1, and
khigh > |x; —/1| + 02
B DAILY STANDARD DEVIATION
DISTRIBUTION

The Fig. 22, shows the probability bar plot for SDgy4(T) for the
Texas dataset. We see that in most cases under no attacks, the prob-
ability of SDg04(T), being between 425W-475W, centered around
450W is 0.52. Probabilities of all other ranges are much lesser.
Hence, the mode of the distribution is a reasonable approximation
for o, under attacks being confirmed.
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Figure 22: Historical SDg4(T):0pr approximation
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C STEALTHY PERSISTENT ATTACKS

Fig. 23, shows an example that our ratio metric may work even un-
der ultra-stealthy margins of false data. Here p,,,4; = 40% and 8404
is as low as 50W, where our attack was implemented from the 41st
day. We estimated that this pp,,7,840g Will cause deviation less
than the e with all the knowledge we possessed. Indeed, this works
well for most of the time, but is not guaranteed to escape detection
altogether, since all the meters whether compromised or not have
erratically changing data that is difficult to predict beforehand. In
future work, we will propose a mathematical detection criterion
for such stealthy attacks.

Targeted one sided attacks, may happen theoretically, where at-
tack only attacks datapoints greater than the mean, then the obser-
vations will reversed. Deductive attacks may show an increase in
ratio, but in this case it will be restricted to only attacking 36% of
the total datapoints which restricts the attack significantly.
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Figure 23: Deductive Attack with Full Knowledge

D COST BENEFIT UNDER MISSED
DETECTION

The revenue of an adversary per day who has M undetected me-
ters is given by: RR = M, where 7 is the number of
reports a day, and E = $0.12 is the average per unit (KW-Hour)
cost of electricity in USA. In [29, 30] mentioned that cost of com-
promising the smart meter is about $500, in the puerto rico attack.
Here, utility maintainance personnel asked for $300 — $700 from
different customers and hacked their meters that reported lesser
power consumption, and promised benefit over time. The optimal
laser probes used for those attacks vary around 400. Therefore,
for compromising 80 meters, the attack cost is about $40,000. At
davg = 300, we have missed detection of 42 meters, hence the
revenue for attacker is $36/day. At this rate, it would take about 3
years to recover the attack cost $40,000. For §404 = 350, only 7 me-
ters remain undetected by our method, with an average revenue of
$6/day. At this rate, it will take 18 years to recover the attack cost.
In future, we will explore how to identify meters reliably which
have 8409 < 300W. That study will be useful if the attacker de-
vises/offers novel cheaper ways of attack. Also, note that in terms
of time to detection also our work is quicker (less than 10 days)
compared to existing works. Hence, an attacker who does not in-
tend to remain undetected, is not able to gain much attack revenue.
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